Max Baak (CERN), on behalf of the Gfitter group (*) Rencontres de Moriond QCD La Thuile, 9th-15th March 2013

EPJC 72, 2205 (2012), arXiv:1209.2716

The ElectroWeak fit of Standard Model after the Discovery of the Higgs-like boson

(*) M. Baak, J. Haller, A. Höcker, R. Kogler, K. Mönig, M. Schott, J. Stelzer

Reminder: the predictive power of the SM

- $i\bar{f}\gamma^{\mu}\left(g_{V,f}-g_{A,f}\gamma_{5}\right)fZ_{\mu}$
- Unification connects the electromagnetic and weak couplings
- E.g. M_W can be expressed as function of M_Z and G_F

- The impact of radiative corrections
 - Absorbed into EW form factors: $\rho,\,\kappa,\,\Delta r$
 - Effective couplings at the Z-pole
 - Quadraticly dependent on m_t, *logarithmic* dependence on M_H

$$g_{V,f} = \sqrt{\rho_Z^f} \left(I_3^f - 2Q^f \sin^2 \theta_{\text{eff}}^f \right)$$
$$g_{A,f} = \sqrt{\rho_Z^f} I_3^f$$
$$\sin^2 \theta_{\text{eff}}^f = \kappa_Z^f \sin^2 \theta_W$$
$$M_W^2 = \frac{M_Z^2}{2} \left(1 + \sqrt{1 - \frac{\sqrt{8\pi\alpha(1 + \Delta r)}}{G_F M_Z^2}} \right)$$

Global EW fits: a long tradition

200

150

100

50

M_t [GeV]

CERN

- EW fits: a long tradition
- Huge amount of pioneering work by many!
- Precision measurements crucial, first from LEP/SLC, then Tevatron and now LHC.
- Precise understanding of loop corrections essential.
 - Observables known at least at two-loop order, sometimes more.
- Hunt for the Higgs
 - M_H last missing input parameter
 - Indirect determination from EW fit (2012):
 M_H = 96⁺³¹₋₂₄ GeV
 - (Direct exclusion limits also incorporated in EW fits.)

The SM fit with Gfitter, including the Higgs

CERN

- Discovery of Higgs-like boson by LHC
- Cross section and branching ratios sofar ~compatible with SM Higgs boson
- This talk: assume boson is SM Higgs.
- Use in EW fit: M_H = 125.7 ± 0.4 GeV
- Change between fully uncorrelated and fully correlated systematic uncertainties is minor: δM_H : 0.4 \rightarrow 0.5 GeV

- For first time SM is fully over-constrained \rightarrow test its self-consistency!
- In EW fit with Gfitter we use state-of-the-art calculations:
- *M_W* Mass of the W boson [M. Awramik et al., Phys. Rev. D69, 053006 (2004)]
- Γ_Z , Γ_W Partial and total widths of the Z and W [Cho et. al, arXiv:1104.1769]
- sin²θ^f_{eff} Effective weak mixing angle [M. Awramik et al., JHEP 11, 048 (2006), M. Awramik et al., Nucl.Phys.B813:174-187 (2009)]
- Γ_{had}
- QCD Adler functions at N3LO [P. A. Baikov et al., PRL108, 222003 (2012)]

Partial width of $Z \rightarrow b\overline{b}$ [Freitas et al., JHEP08, 050 (2012)] **New!** full 2-loop calc.

CERN

Electroweak fit – Experimental inputs

	I		
Latest experimental inputs:	$M_H \ [\text{GeV}]^{(\circ)}$	125.7 ± 0.4	LHC
 Z-pole observables: from LEP / SLC [ADLO+SLD, Phys. Rept. 427, 257 (2006)] 	M_W [GeV] Γ_W [GeV]	80.385 ± 0.015 2.085 ± 0.042	Tevatron
 M_W and Γ_W from LEP/Tevatron [arXiv:1204.1069] 	M_Z [GeV]	91.1875 ± 0.0021	
 m_{top}: average from Tevatron [arXiv:1207.1069] 	$\Gamma_Z~[ext{GeV}] \ \sigma_{ ext{had}}^0~[ext{nb}]$	2.4952 ± 0.0023 41.540 ± 0.037	LHC
 m_c, m_b world averages [PDG, J. Phys. G33,1 (2006)] 	$egin{array}{c} R^0_\ell\ A^{0,\ell}_{ m FB} \end{array}$	20.767 ± 0.025 0.0171 ± 0.0010	
• $\Delta \alpha_{had}^{(5)}(M_Z^2)$ including α_S dependency [Davier et al., EPJC 71, 1515 (2011)]	$A_{\ell}^{(\star)}$ $\sin^2 \theta_{\text{eff}}^{\ell}(Q_{\text{FB}})$	0.1499 ± 0.0018 0.2324 ± 0.0012	SLC
• M _H from LHC [arXiv:1207.7214, arXiv:1207.7235]	A_c A_b	0.670 ± 0.027 0.923 ± 0.020	SLC
7 free fit parameters:	$egin{aligned} &A_{ ext{FB}}^{0,c} \ &A_{ ext{FB}}^{0,b} \end{aligned}$	0.0707 ± 0.0035 0.0992 ± 0.0016	LEP
• M_Z , M_H , $\alpha_S(M_Z^2)$, $\Delta \alpha_{had}^{(5)}(M_Z^2)$, m_t , \overline{m}_c , \overline{m}_b	$egin{array}{c} R_c^0 \ R_b^0 \end{array}$	$\begin{array}{c} 0.1721 \pm 0.0030 \\ 0.21629 \pm 0.00066 \end{array}$	
 Two nuisance parameters for theoretical uncertainties. 	$\overline{m}_c \text{ [GeV]}$ $\overline{m}_b \text{ [GeV]}$	$\frac{1.27^{+0.07}_{-0.11}}{4.20^{+0.17}_{-0.07}}$	
δM_W (4 MeV), $\delta sin^2 \theta_{eff}^I$ (4.7x10 ⁻⁵)	$m_t \; [ext{GeV}] \ \Delta lpha_{ ext{had}}^{(5)}(M_Z^2) \; {}^{(riangle abla)}$	173.18 ± 0.94 2757 ± 10	Tevatron

Electroweak Fit – SM Fit Results

•	From the	Parameter	Input value	Free in fit	Fit result incl. M_H	Fit result not incl. M_H	Fit result incl. M_H but not exp. input in row
	Gfitter	$M_H \ [GeV]^{(\circ)}$	125.7 ± 0.4	yes	125.7 ± 0.4	94^{+25}_{-22}	94^{+25}_{-22}
	Group,	M_W [GeV]	80.385 ± 0.015		80.367 ± 0.007	80.380 ± 0.012	80.359 ± 0.011
	FPJC 72	Γ_W [GeV]	2.085 ± 0.042	-	2.091 ± 0.001	2.092 ± 0.001	2.091 ± 0.001
	2205	M_Z [GeV]	91.1875 ± 0.0021	yes	91.1878 ± 0.0021	91.1874 ± 0.0021	91.1983 ± 0.0116
		Γ_Z [GeV]	2.4952 ± 0.0023	-	2.4954 ± 0.0014	2.4958 ± 0.0015	2.4951 ± 0.0017
	(2012)	$\sigma_{ m had}^0$ [nb]	41.540 ± 0.037	-	41.479 ± 0.014	41.478 ± 0.014	41.470 ± 0.015
		R_ℓ^0	20.767 ± 0.025	-	20.740 ± 0.017	20.743 ± 0.018	20.716 ± 0.026
		$A_{ m FB}^{0,\ell}$	0.0171 ± 0.0010	-	0.01627 ± 0.0002	0.01637 ± 0.0002	0.01624 ± 0.0002
	Left: full fit	$A_\ell \ ^{(\star)}$	0.1499 ± 0.0018	-	$0.1473^{+0.0006}_{-0.0008}$	0.1477 ± 0.0009	$0.1468 \pm 0.0005^{(\dagger)}$
	ingl M	$\sin^2 \theta_{\rm eff}^{\ell}(Q_{\rm FB})$	0.2324 ± 0.0012	-	$0.23148^{+0.00011}_{-0.00007}$	$0.23143^{+0.00010}_{-0.00012}$	0.23150 ± 0.00009
	IIICI. IVI _H	A_c	0.670 ± 0.027	-	$0.6680^{+0.00025}_{-0.00038}$	$0.6682^{+0.00042}_{-0.00035}$	0.6680 ± 0.00031
		A_b	0.923 ± 0.020	-	$0.93464^{+0.00004}_{-0.00007}$	0.93468 ± 0.00008	0.93463 ± 0.00006
		$A_{ m FB}^{0,c}$	0.0707 ± 0.0035	-	$0.0739^{+0.0003}_{-0.0005}$	0.0740 ± 0.0005	0.0738 ± 0.0004
	Middle: fit	$A_{ m FB}^{0,b}$	0.0992 ± 0.0016	-	$0.1032^{+0.0004}_{-0.0006}$	0.1036 ± 0.0007	0.1034 ± 0.0004
	not incl. M.	R_c^0	0.1721 ± 0.0030	-	0.17223 ± 0.00006	0.17223 ± 0.00006	0.17223 ± 0.00006
	Hot mon m _H	R_b^0	0.21629 ± 0.00066	_	0.21474 ± 0.00003	0.21475 ± 0.00003	0.21473 ± 0.00003
		\overline{m}_c [GeV]	$1.27^{+0.07}_{-0.11}$	yes	$1.27^{+0.07}_{-0.11}$	$1.27^{+0.07}_{-0.11}$	-
	Right [.] fit	\overline{m}_b [GeV]	$4.20^{+0.17}_{-0.07}$	yes	$4.20^{+0.17}_{-0.07}$	$4.20^{+0.17}_{-0.07}$	-
		$m_t \; [\text{GeV}]$	173.18 ± 0.94	yes	173.52 ± 0.88	173.14 ± 0.93	$175.8^{+2.7}_{-2.4}$
	INCENT _H ,	$\Delta \alpha_{\rm had}^{(5)}(M_Z^2) \stackrel{(\triangle \bigtriangledown)}{\to}$	2757 ± 10	yes	2755 ± 11	2757 ± 11	$2716{}^{+49}_{-43}$
	not the row	$\alpha_s(M_Z^2)$	_	yes	0.1191 ± 0.0028	0.1192 ± 0.0028	0.1191 ± 0.0028
		$\delta_{ m th} M_W$ [MeV]	$[-4,4]_{\mathrm{theo}}$	yes	4	4	_
		$\delta_{\rm th} \sin^2 \theta_{\rm eff}^{\ell} (\Delta)$	$[-4.7, 4.7]_{\rm theo}$	yes	-1.4	4.7	-

Max Baak (CERN)

The ElectroWeak fit of Standard Model

Electroweak Fit – SM Fit Results

- Pull values of full fit (with M_H)
 - No individual value exceeds 3σ
 - Small pulls for M_H , M_Z , $\Delta \alpha_{had}^{(5)}(M_Z^2)$, $\overline{m_c}$, $\overline{m_b}$ indicate that input accuracies exceed fit requirements
 - Largest deviations in b-sector: $A^{0,b}_{FB}$ and R^{0}_{b} with 2.5 σ and -2.4 σ \rightarrow largest contribution to χ^{2}
 - R⁰_b using one-loop calculation -0.8σ
 - $R^0_{\ b}$ has only little dependence on M_H
- Goodness of fit p-value:
 - χ^2_{min} = 21.8 \rightarrow Prob(χ^2_{min} , 14) = 8 %
 - From pseudo experiments: 7±1%
 - Large value of χ^2_{min} not due to inclusion of M_H measurement.
 - Without M_H measurement: $\chi^2_{min} = 20.3 \rightarrow \text{Prob}(\chi^2_{min}, 13) = 9\%$

Higgs results of the EW fit

Indirect determination of W mass

Uncertainty on world average measurement: 15 MeV

Indirect effective weak mixing angle

∆2

- Right: scan of Δχ² profile versus sin²θ^l_{eff}
 - All sensitive measurements removed from the SM fit.
 - Also shown: SM fit with minimal inputs
- M_H measurement allows for very precise constraint on sin²θ^I_{eff}

Fit result for indirect determination of sin²θ^I_{eff} :

 $\sin^2 \theta_{\text{eff}}^{\ell} = 0.231496 \pm 0.000030_{m_t} \pm 0.000015_{M_Z} \pm 0.000035_{\Delta \alpha_{\text{had}}} \\ \pm 0.000010_{\alpha_S} \pm 0.000002_{M_H} \pm 0.000047_{\text{theo}} ,$

 $= 0.23150 \pm 0.00010_{\rm tot} \; ,$

- More precise than direct determination (from LEP/SLD) !
 - Uncertainty on LEP/SLD average: 1.7x10⁻⁴

Indirect determination of top mass

- Shown: scan of $\Delta \chi^2$ profile versus m_t (without m_t measurement)
 - M_H measurement allows for significant better constraint of m_t
 - Indirect determination consistent with direct measurements
 - Indirect result: $m_t = 175.8^{+2.7}_{-2.4} \text{ GeV}$ (Tevatron average: 173.2 ± 0.9 GeV)

State of the SM: W versus top mass

- Scan of M_W vs m_t, with the direct measurements excluded from the fit.
- Results from Higgs measurement significantly reduces allowed indirect parameter space → corners the SM!

Observed agreement demonstrates impressive consistency of the SM!

Constraints on S, T, U

- Electroweak fit sensitive to BSM physics through vacuum polarization corrections (also absorbed in ρ, κ, Δr).
- Described with STU parametrization [Peskin and Takeuchi, Phys. Rev. D46, 1 (1991)]
- SM: M_H = 125.7 GeV, m_t = 173.2 GeV
 - This defines (S,T,U) = (0,0,0)
- S, T depend logarithmically on M_H
- Fit result:
 $S = 0.03 \pm 0.10$ S = 1 + 0.89 0.54

 $T = 0.05 \pm 0.12$ T 1 0.83

 $U = 0.03 \pm 0.10$ U 1
- Stronger constraints from fit with U=0
- No indication for new physics.
- Can now use this constrain 4th gen, Ex-Dim, T-C, Higgs couplings, etc.

- Future Linear Collider could improve precision of EW observables tremendously.
 - *WW threshold, to obtain M_W*
 - from threshold scan: δM_W : 15 \rightarrow 6 MeV
 - ttbar threshold, to obtain m_t
 - obtain m_t indirectly from production cross section: $\delta m_t: 0.9 \rightarrow 0.1 \; GeV$
 - Z pole measurements
 - High statistics: 10^9 Z decays: δR^{0}_{lep} : $2.5 \cdot 10^{-2} \rightarrow 4 \cdot 10^{-3}$
 - With polarized beams, uncertainty on $\delta A^{0,f}_{LR}$: $10^{-3} \rightarrow 10^{-4}$, which translates to $\delta \sin^2 \theta^{I}_{eff}$: $1.6 \cdot 10^{-4} \rightarrow 1.3 \cdot 10^{-5}$
- Low-energy data results
 - For Δα_{had}:
 - more precise e⁺e⁻ cross section results for low energy (\sqrt{s} < 1.8 GeV) and around cc resonance (KLOE-II, BaBar-ISR, BES-III), improved α_s , improvements in theory: $\Delta \alpha_{had}$: 10⁻⁴ \rightarrow 5 · 10⁻⁵

Prospects for ILC with Giga Z

- Logarithmic dependency on $M_H \rightarrow$ cannot compete with direct M_H meas.
- Indirect prediction M_H dominated by theory uncertainties.
 - No theory uncertainty: $M_H = 94.2^{+5.3}_{-5.0} \text{ GeV}$
 - Rfit scheme: $M_{\rm H} = 92.3^{+16.6}_{-11.6} \, {\rm GeV}$

Prospects for ILC with Giga Z

Also strong constraints on S, T, U

M_w [GeV]

-0.5

s

fitter

0.2

Conclusion and Today's Prospects

- CERN
- Including M_H measurement, for first time SM is fully over-constrained!
 - M_H consistent at 1.3 σ with indirect prediction from EW fit.
- p-Value of global electroweak fit of SM: 7% (pseudo-experiments)
 - Would be great to revisit $Z \rightarrow b\overline{b}$, both theoretically and experimentally
- Knowledge of M_H dramatically improves SM prediction of key observables
 - M_W (28 \rightarrow 11 MeV), $sin^2\theta_{eff}^{I}$ (2.3x10⁻⁵ \rightarrow 1.0x10⁻⁵), m_t (6.2 \rightarrow 2.5 GeV)
- Improved accuracies set benchmark for new direct measurements!

- Latest results always available at: <u>http://cern.ch/Gfitter</u>
 - Results in this presentation: EPJC 72, 2205 (2012)

A Generic Fitter Project for HEP Model Testing

Backup

Goodness of Fit

- Toy analysis with 20k pseudo experiments
 - p-value = probability of getting $\chi^2_{min, toy}$ larger than χ^2_{min} from data
 - i.e probability of incorrectly rejecting the SM as false = 0.07 ± 0.01 (theo)

A Gfitter package for Oblique Corrections

- At low energies, BSM physics appears dominantly through vacuum polarization corrections
 - Aka, "oblique corrections"
- Oblique corrections reabsorbed into electroweak parameters
 - $\Delta \rho$, $\Delta \kappa$, Δr parameters, appearing in: M_W², sin² θ_{eff} , G_F, α , etc
- Electroweak fit sensitive to BSM physics through oblique corrections x
 - In direct competition with sensitivity to Higgs loop corrections

 Oblique corrections from New Physics described through STU parametrization [Peskin and Takeuchi, Phys. Rev. D46, 1 (1991)]

 $O_{meas} = O_{SM,REF}(m_H,m_t) + c_S S + c_T T + c_U U$

- S: New Physics contributions to neutral currents
- T: Difference between neutral and charged current processes – sensitive to weak isospin violation
- U: (+S) New Physics contributions to charged currents. U only sensitive to W mass and width, usually very small in NP models (often: U=0)
- Also implemented: correction to Z→bb coupling, extended parameters (VWX)
 [Burgess et al., Phys. Lett. B326, 276 (1994)]
 [Burgess et al., Phys. Rev. D49, 6115 (1994)]

New R⁰_b calculation [A. Freitas et al., JHEP 1208, 050 (2012)]

- The branching ratio R^0_b : partial decay width of Z \rightarrow bb to Z \rightarrow qq
- Freitas et al: full 2-loop calculation of $Z \rightarrow bb$
- Contribution of same terms as in the calculation of $sin^2 \theta^{bb}_{eff}$ \rightarrow cross-check of two results found good agreement
- Two-loop corrections comparable to experimental uncertainty (6.6x10⁻⁴)

	1-loop EW and QCD correction to FSR	2-loop EW correction	2-loop EW and 2+3-loop QCD correction to FSR	1+2-loop QCD correction to gauge boson self-energies
$M_{ m H}$ [GeV]	$\begin{array}{c} \mathcal{O}(\alpha) + \mathrm{FSR}_{1-\mathrm{loop}} \\ [10^{-3}] \end{array}$	$\begin{array}{c} \mathcal{O}(\alpha_{\rm ferm}^2) \\ [10^{-4}] \end{array}$	$\begin{array}{c} \mathcal{O}(\alpha_{\rm ferm}^2) + {\rm FSR}_{>1-\rm loop} \\ [10^{-4}] \end{array}$	$\begin{array}{c} \mathcal{O}(\alpha\alpha_{\rm s},\alpha\alpha_{\rm s}^2) \\ [10^{-4}] \end{array}$
100	-3.632	-6.569	-9.333	-0.404
200	-3.651	-6.573	-9.332	-0.404
400	-3.675	-6.581	-9.331	-0.404

$\alpha_s(M_Z)$ from Z→hadrons

CERN

- Determination of α_s at N3LO.
- Most sensitive through total hadronic cross-section σ⁰_{had} and partial leptonic width R⁰₁
- Theory uncertainty obtained by scale variation, at per-mille level.

 $\alpha_s(M_Z) = 0.1191 \pm 0.0028 \,(\text{exp.}) \pm 0.0001 \,(\text{theo.})$

- Good agreement with value from t decays, also at N3LO.
- Improvements in precision only expected with ILC/GigaZ

Higgs couplings in the EW fit

- In latest ATLAS H→γγ, 2.3σ deviation seen from SM μ (≡1.0)
- Interpret.: $H \rightarrow VV$ couplings scaled with c_V

From: Falkowski et al, arXiv:1303.1812

- Modified Higgs couplings can be constrained by EW fit through extended STU formalism.
- Result of c_V driven by limit on T parameter.
 - Tree-level relation: $\rho_0 = \frac{M_{W_0}^2}{M_Z^2 c_w^2} = 1 + \alpha T$

$$\alpha T \approx \frac{3g_Y^2}{32\pi^2} \left(c_V^2 - 1\right) \log(\Lambda/m_Z)$$

- Reminder: T = 0.05 ± 0.12 (Gfitter)
- EW-fit Falkowski et al: $c_V \approx 1.08 \pm 0.07$
 - Blue dashed: c_V from µ's, black: comb. w/ EW

Falkowski et al, arXiv:1303.1812

 C_V