

Electroweak constraints in the Standard Model and beyond

Thomas Peiffer

on behalf of the Gfitter collaboration

M. Baak, J. Cuth, J. Haller, A. Hoecker, R. Kogler, K. Möing, M. Schott, J. Stelzer

Recontres de Blois 2015

3.6.2015

Overview

Content:

The electroweak fit of the SM

New physics constraints

The 2-Higgs-Doublet Model (2HDM)

Outlook

The Electroweak Fit G fitter

- Gauge & scalar sector is determined by 4 parameters (choose $\alpha,\,G_{_F},\,M_{_Z},\,M_{_H})$
- Other parameters and observables related by theory

$$\sin^2 \theta_W = 1 - \frac{M_W^2}{M_Z^2} \qquad M_W^2 \sin^2 \theta_W = \frac{\pi \alpha}{\sqrt{2} G_F}$$

- \rightarrow over-constrained theory allows consistency check and search for BSM
- Other SM parameters (quark masses, $M_{\text{H}},\,\alpha_{\text{s}})$ enter by radiative corrections

• α and G_F know with high precision \rightarrow not varied in the fit

Theoretical Input

- Consistent set of full EW 2-loop calculations is available:
 - sin²Θ^f_{eff}: effective weak mixing angle (from ratio g_V/g_A) (M. Awramik et al., PRL 93, 201805 (2004), JHEP 11, 048 (2006), Nucl. Phys. B813, 174 (2009))
 - M_W: mass of the W boson, includes QCD corrections at 4-loop level (M. Awramik et al., PRD 69, 053006 (2004), PRL 89, 241801 (2002))
 - Γ_f: partial widths of the Z boson (A. Freitas, JHEP 04, 070 (2014))
 - Radiator functions to Γ_f: QED and QCD corrections up to N³LO (Baikov et al., PRL 108, 222003 (2012))
 - Γ_W: width of the W boson, only 1-loop EW corrections included
 (Cho et al., JHEP 1111, 068 (2011)
- Estimate uncertainties due to unknown higher orders (using a geometric series):

$\delta_{ m theo} M_W$ $\delta_{ m theo} \sin^2 \theta_{ m eff}^f$ $\delta_{ m theo} \Gamma_{e,\mu, au}$ $\delta_{ m theo} \Gamma_{ u}$	4 MeV $4.7 \cdot 10^{-5}$ 0.012 MeV 0.014 MeV	$egin{aligned} &\delta_{ ext{theo}}\Gamma_{u,c}\ &\delta_{ ext{theo}}\Gamma_b\ &\delta_{ ext{theo}}\sigma_{ ext{had}}^0\ &\delta_{ ext{theo}}\mathcal{R}_{V\!,A} \end{aligned}$	$egin{aligned} 0.12 \ { m MeV} \ 0.21 \ { m MeV} \ 6 \ { m pb} \ \sim \mathcal{O}(lpha_s^4) \end{aligned}$	Uncertainty on m _t : Relation between m _{pole} and measured mass
$\delta_{ m theo} \Gamma_{d,s}$	0.09 MeV	$\delta_{ m theo} \kappa_{V,A}$ $\delta_{ m theo} m_t$	0.5 GeV	

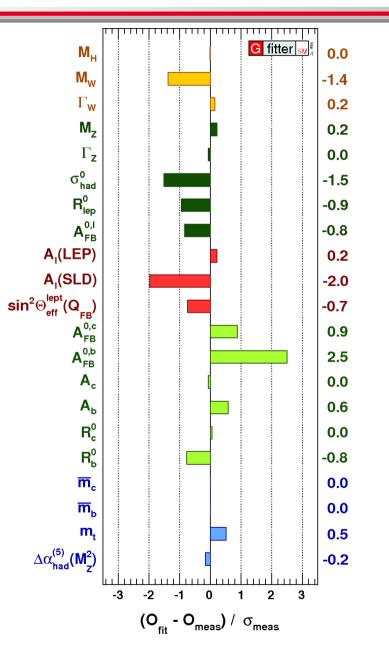
Recontres de Blois 2015

Experimental Input

All SM parameters measured in experiments	M_H [GeV]	125.14 ± 0.24
 Input from e⁺e⁻ colliders (LEP+SLC): 	M_W [GeV]	80.385 ± 0.015
• M_7 , M_W , Γ_W , Γ_7	$\frac{\Gamma_W [\text{GeV}]}{M_Z [\text{GeV}]}$	2.085 ± 0.042 91.1875 ± 0.0021
 (forward-backward) asymmetries 	$\Gamma_Z [{ m GeV}]$	2.4952 ± 0.0023
 partial-Z-width ratios R 	$\sigma_{ m had}^0 [{ m nb}] \ R_\ell^0$	$\begin{array}{c} 41.540 \pm 0.037 \\ 20.767 \pm 0.025 \end{array}$
 Input from hadron colliders (LHC+Tevatron): 	$\stackrel{\circ}{A_{\mathrm{FB}}^{0,\ell}}$	$0.0171 \pm 0.0010 \\ 0.1499 \pm 0.0018$
 M_w, Γ_w 	$A_\ell \ \sin^2\! heta_{ m eff}^\ell(Q_{ m FB})$	$\begin{array}{c} 0.1499 \pm 0.0018 \\ 0.2324 \pm 0.0012 \end{array}$
	$egin{array}{c} A_c \ A_b \end{array}$	0.670 ± 0.027 0.923 ± 0.020
• M _H	$A_{\rm FB}^{0,c}$	0.0707 ± 0.0035
• m _t	$egin{array}{c} A_{ m FB}^{0,b} \ R_c^0 \end{array}$	$\begin{array}{c} 0.0992 \pm 0.0016 \\ 0.1721 \pm 0.0030 \end{array}$
• $\alpha_s(M_z^2)$ enters the fit as free parameter	$\frac{R_b^0}{}$	0.21629 ± 0.00066
• α evolving parameterized with $\Delta \alpha^{(5)}_{had}$	$\overline{m}_c [\text{GeV}] \ \overline{m}_b [\text{GeV}]$	${\begin{array}{c}{1.27}\scriptstyle+0.07\\\scriptstyle-0.11\\{4.20}\scriptstyle+0.17\\\scriptstyle-0.07\end{array}}$
	$m_t [{ m GeV}]$	173.34 ± 0.76

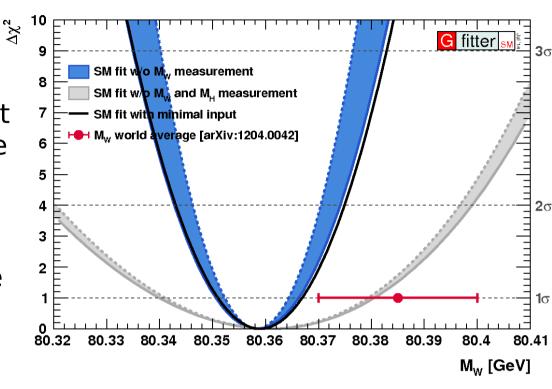
Recontres de Blois 2015

Thomas Peiffer


 $\Delta \alpha_{\rm had}^{(5)}(M_Z^2)$

 2757 ± 10

Results


- Global χ^2 =17.8 (for ndof = 14), p-value=0.21
- Predictions consistent with measurements
- Largest deviation for $A_{FB}^{0,b} \sim 2.5\sigma$

Recontres de Blois 2015

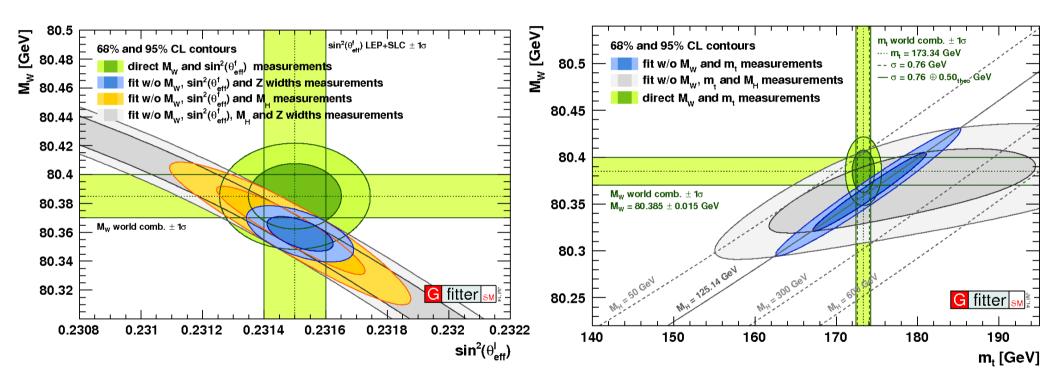
Indirect determination G fitter

- Perform fit without including direct measurement of observable in the fit
- Indirect determination of M_w more precise than direct measurement

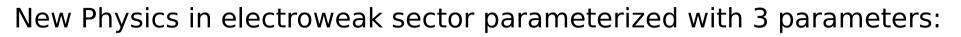
$$\begin{split} M_W &= 80.3584 \pm 0.0046_{m_t} \pm 0.0030_{\delta_{\text{theo}}m_t} \pm 0.0026_{M_Z} \pm 0.0018_{\Delta\alpha_{\text{had}}} \\ &\pm 0.0020_{\alpha_S} \pm 0.0001_{M_H} \pm 0.0040_{\delta_{\text{theo}}M_W} \text{ GeV} \,, \end{split}$$

 $= 80.358 \pm 0.008_{\rm tot} \; {\rm GeV} \, .$

compared to world average: 80.385 ± 0.015 GeV


Recontres de Blois 2015

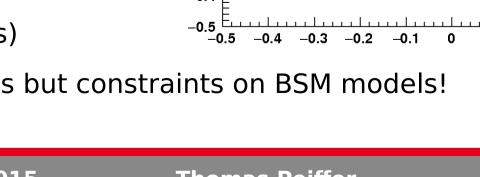
2D Scans

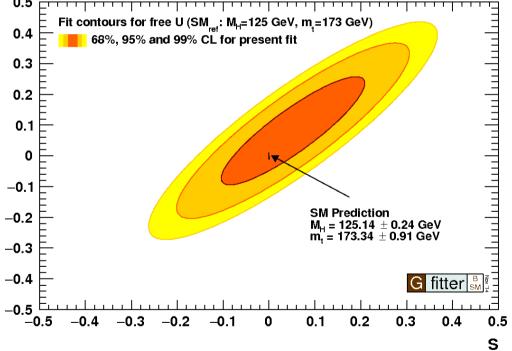

- Testing simultaneously two sensitive observables to New Physics effects
- Determine χ^2 for each point in 2D space

- Increased precision due to knowledge of $M_{\rm H}$
- Good consistency of SM predictions and measurements

Oblique Parameters

- S: changes to neutral currents
- T: changes to difference between charged and neutral currents
- U: changes to W width and mass

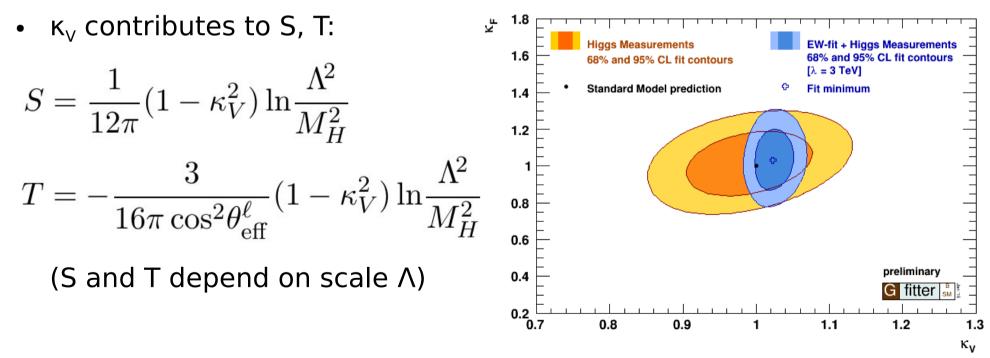

In SM: S=T=U=0


```
Fit result (for fixed M_{H}=125 GeV
and m_{t}=173 GeV):
```

$$S = 0.05 \pm 0.11$$

 $T = 0.09 \pm 0.13$
 $U = 0.01 \pm 0.11$

(with large correlations)



G fitter

Higgs Couplings

- New in Gfitter: constraints from Higgs physics with interface to HiggsBounds & HiggsSignals (P. Bechtle et al., Eur.Phys.J C74 (2014) 2693 & 2711)
- Include latest Higgs branching ratio measurements from LHC
- Simple New Physics example:
 - Scale boson and fermion couplings with κ_v and κ_F

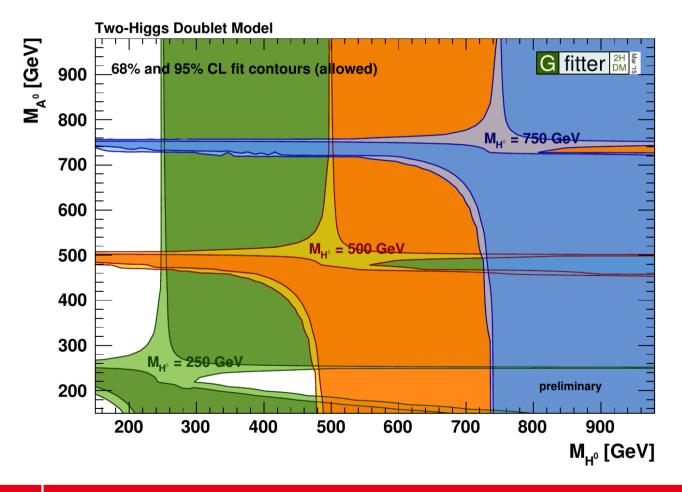
Combination of Higgs and EW data improves sensitivity to New Physics

titter

The 2-Higgs-Doublet Model

- Simplest extension of the SM Higgs sector
- One additional Higgs doublet \rightarrow 5 Higgs bosons:

 h_0, H_0, A_0, H^+, H^-


- Additional free parameters:
 - tan $\beta = v_2/v_1$
 - α : mixing angle of the neutral Higgs fields
 - M_{12}^{2} : mass parameter of the mixed term $\Phi_{1}^{\dagger}\Phi_{2}$, soft breaking scale

How is the 2HDM constrained by the EW fit and the measured Higgs boson?

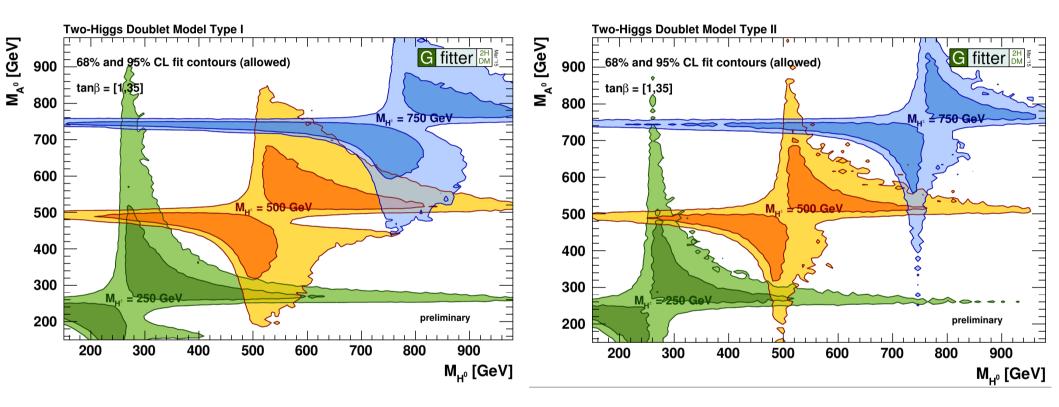
2HDM: EW Constraints G fitter

- Use STU formalism to constrain 2HDM
- Assume: discovered 125 GeV Higgs boson is light h₀
- Keep tan β and α free (not constraint by EW data)

Only weak constraints on masses from electroweak data

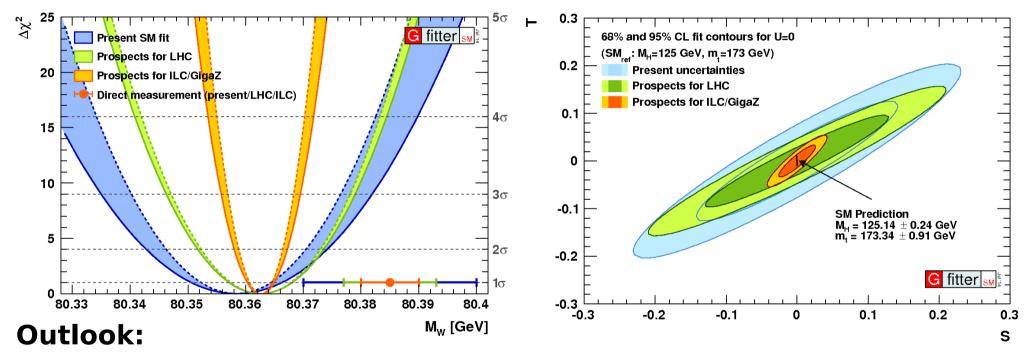
2HDM: Higgs BRs

- Measured Higgs branching ratios can constrain 2HDM
- Predictions for Higgs BRs from 2HDMC (D. Eriksson et al., CPC 181, 189 (2010))
- Type I, Type II, flipped (Type III), lepton specific (Type IV) with different Yukawa couplings to light, heavy and charged Higgses
- Importance sampling algorithm MultiNest (F. Feroz et al., arXiv:1306.2144) used to scan parameter space


Recontres de Blois 2015

2HDM: Mass limits

Mass scans with constraints from Higgs BRs and EW data


Not included so far: Constraints from flavor physics and direct searches

Recontres de Blois 2015

Conclusion & Outlook G fitter

- Electroweak fit probes SM at high precision
- Combination of EW and Higgs data can be used to constrain New Physics

- LHC and future e⁺e⁻ colliders could improve measurements
- EW fit important to test SM with ultra-high precision in the future

BACKUP

Recontres de Blois 2015

Fit Results

Parameter	Input value	Free in fit	Fit Result	w/o exp. input in line	w/o exp. input in line, no theo. unc
$M_H [{ m GeV}]^{({ m o})}$	125.14 ± 0.24	yes	125.14 ± 0.24	93^{+25}_{-21}	93^{+24}_{-20}
M_W [GeV]	80.385 ± 0.015	_	80.364 ± 0.007	80.358 ± 0.008	80.358 ± 0.006
Γ_W [GeV]	2.085 ± 0.042	_	2.091 ± 0.001	2.091 ± 0.001	2.091 ± 0.001
M_Z [GeV]	91.1875 ± 0.0021	yes	91.1880 ± 0.0021	91.200 ± 0.011	91.2000 ± 0.010
Γ_Z [GeV]	2.4952 ± 0.0023	_	2.4950 ± 0.0014	2.4946 ± 0.0016	2.4945 ± 0.0016
$\sigma_{ t had}^0$ [nb]	41.540 ± 0.037	_	41.484 ± 0.015	41.475 ± 0.016	41.474 ± 0.015
R^0_ℓ	20.767 ± 0.025	_	20.743 ± 0.017	20.722 ± 0.026	20.721 ± 0.026
$A_{ m FB}^{\widetilde{0},\ell}$	0.0171 ± 0.0010	_	0.01626 ± 0.0001	0.01625 ± 0.0001	0.01625 ± 0.0001
$A_\ell {}^{(\star)}$	0.1499 ± 0.0018	_	0.1472 ± 0.0005	0.1472 ± 0.0005	0.1472 ± 0.0004
$\sin^2 \theta_{\rm eff}^{\ell}(Q_{\rm FB})$	0.2324 ± 0.0012	_	0.23150 ± 0.00006	0.23149 ± 0.00007	0.23150 ± 0.00005
A_c	0.670 ± 0.027	_	0.6680 ± 0.00022	0.6680 ± 0.00022	0.6680 ± 0.00016
A_b	0.923 ± 0.020	_	0.93463 ± 0.00004	0.93463 ± 0.00004	0.93463 ± 0.00003
$A_{ m FB}^{0,c}$	0.0707 ± 0.0035	_	0.0738 ± 0.0003	0.0738 ± 0.0003	0.0738 ± 0.0002
$A_{ m FB}^{\hat{0},ar{b}}$	0.0992 ± 0.0016	_	0.1032 ± 0.0004	0.1034 ± 0.0004	0.1033 ± 0.0003
R_c^0	0.1721 ± 0.0030	_	$0.17226^{+0.00009}_{-0.00008}$	0.17226 ± 0.00008	0.17226 ± 0.00006
R_b^0	0.21629 ± 0.00066	_	0.21578 ± 0.00011	0.21577 ± 0.00011	0.21577 ± 0.00004
\overline{m}_c [GeV]	$1.27^{+0.07}_{-0.11}$	yes	$1.27^{+0.07}_{-0.11}$	_	_
\overline{m}_b [GeV]	$4.20 {+0.17 \atop -0.07}$	yes	$4.20 \substack{+0.17 \\ -0.07}$	_	_
m_t [GeV]	173.34 ± 0.76	yes	$173.81 \pm 0.85^{(\bigtriangledown)}$	$177.0^{+2.3}_{-2.4}(\bigtriangledown)$	177.0 ± 2.3
$\Delta lpha_{ m had}^{(5)} (M_Z^2)^{(\dagger riangle)}$	2757 ± 10	yes	2756 ± 10	2723 ± 44	2722 ± 42
$lpha_s(M_Z^2)$	_	yes	0.1196 ± 0.0030	0.1196 ± 0.0030	0.1196 ± 0.0028

^(o)Average of the ATLAS and CMS measurements assuming no correlation of the systematic uncertainties.

^(*)Average of the LEP and SLD A_{ℓ} measurements, used as two measurements in the fit.

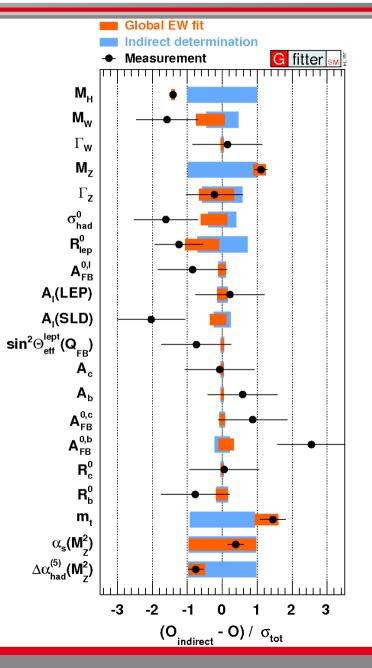
 (∇) The theoretical top mass uncertainty of 0.5 GeV is excluded.

^(†)In units of 10^{-5} .

 $^{(\triangle)}$ Rescaled due to α_s dependence.

Recontres de Blois 2015

Indirect determination G fitter


Other indirect determinations:

 $M_H = 93^{+25}_{-21} \,\mathrm{GeV}$

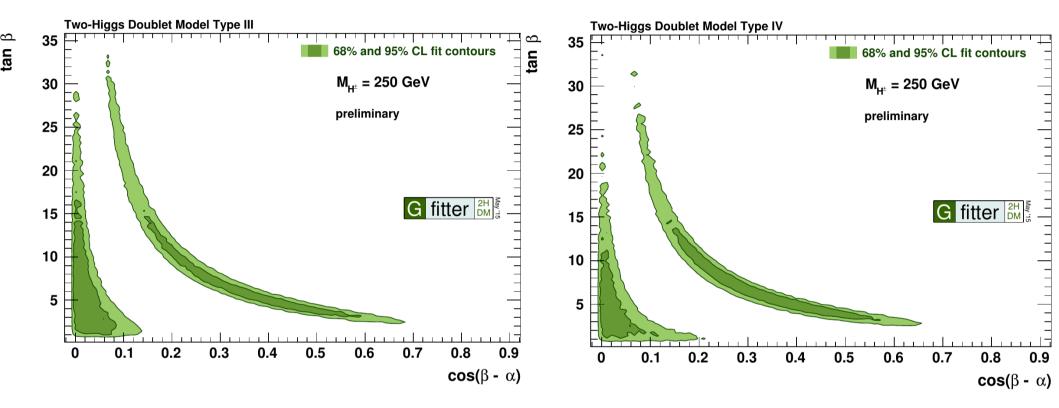
direct value: 125.14 ± 0.24 GeV

$$m_t = 177.0^{+2.3}_{-2.4} \,\mathrm{GeV}$$

direct value: 173.34 ± 0.76 GeV

Recontres de Blois 2015

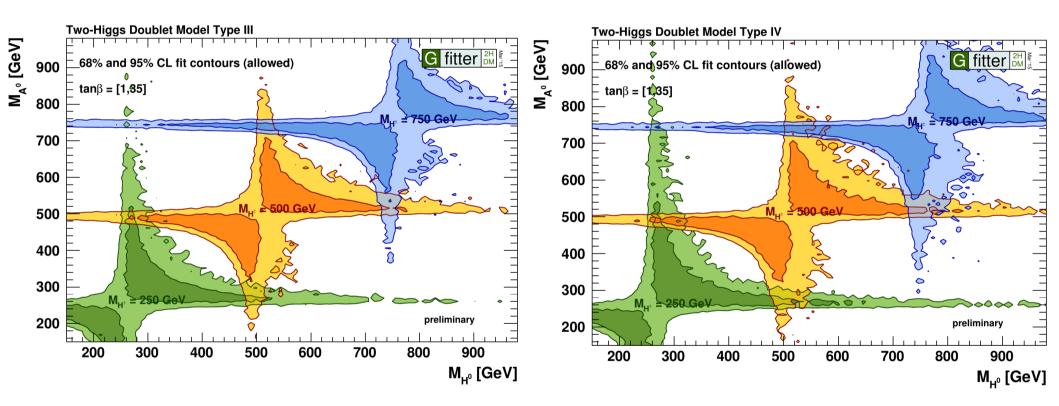
2HDM Types



Parameterization for various 2HDMs (taken from arXiv:1106.0034)

	Type I	Type II	Lepton-specific	Flipped
ξ_h^u	$\cos lpha / \sin eta$	$\cos \alpha / \sin \beta$	$\cos lpha / \sin eta$	$\cos \alpha / \sin \beta$
ξ_h^d	$\cos lpha / \sin eta$	$-\sin lpha / \cos eta$	$\cos lpha / \sin eta$	$-\sin \alpha / \cos \beta$
ξ_h^ℓ	$\cos lpha / \sin eta$	$-\sin lpha / \cos eta$	$-\sin lpha / \cos eta$	$\cos \alpha / \sin \beta$
ξ^u_H	$\sin lpha / \sin eta$	$\sin lpha / \sin eta$	$\sin lpha / \sin eta$	$\sin \alpha / \sin \beta$
ξ^d_H	$\sin lpha / \sin eta$	$\cos lpha / \cos eta$	$\sin lpha / \sin eta$	$\cos \alpha / \cos \beta$
ξ_H^ℓ	$\sin lpha / \sin eta$	$\cos lpha / \cos eta$	$\cos lpha / \cos eta$	$\sin \alpha / \sin \beta$
ξ^u_A	\coteta	\coteta	\coteta	\coteta
ξ^d_A	$-\cot eta$	aneta	$-\cot eta$	aneta
ξ^{ℓ}_A	$-\coteta$	aneta	aneta	$-\cot \beta$

2HDM: Higgs Bounds G fitter


Similar constraints for models Type III and IV

2HDM: Mass Scans

Mass scans with constraints from Higgs BRs and EWPD for Type III and IV

Future Colliders

				5	Experimental uncertainty source $[\pm 1\sigma]$					
Parameter	$\delta_{\rm meas}$	$\delta_{\mathrm{fit}}^{\mathrm{tot}}$	$\delta_{\rm fit}^{\rm theo}$	$\delta_{\rm fit}^{\rm exp}$	δM_W	δM_Z	δm_t	$\delta \sin^2 \! \theta_{\rm eff}^f$	$\delta\Delta lpha_{ m had}$	$\delta lpha_s$
				Pre	sent uncer	tainties				
M_H [GeV]	0.4	$^{+33}_{-27}$	$^{+10}_{-8}$	$^{+31}_{-26}$	$^{+28}_{-23}$	$^{+5}_{-4}$	$^{+10}_{-7}$	$^{+29}_{-23}$	$^{+7}_{-5}$	$^{+4}_{-3}$
M_W [MeV]	15	7.8	5.0	6.0	-	2.5	4.3	5.1	1.6	2.5
M_Z [MeV]	2.1	12.0	3.7	11.4	10.5	-	3.5	11.2	2.2	1.4
$m_t [{ m GeV}]$	0.8	2.5	0.6	2.4	2.3	0.4	(100)	2.3	0.5	0.6
$\sin^2 \theta_{\rm eff}^{\ell}$ (°)	16	6.6	4.9	4.5	3.7	1.2	2.0	—	3.4	1.2
$\Delta \alpha_{\rm had} \ ^{(\circ)}$	10	44	13	42	31	6	10	41		2
					LHC prosp	pects				
M_H [GeV]	< 0.1	$^{+21}_{-18}$	$^{+4}_{-3}$	$^{+20}_{-18}$	$^{+17}_{-14}$	$^{+6}_{-5}$	$^{+8}_{-7}$	$^{+18}_{-16}$	$^{+3}_{-2}$	$^{+5}_{-4}$
M_W [MeV]	8	5.5	1.8	5.2	-	2.5	3.5	4.8	0.8	2.6
M_Z [MeV]	2.1	7.2	1.4	7.0	6.0		2.8	5.9	0.8	1.9
$m_t [{ m GeV}]$	0.6	1.5	0.2	1.5	1.3	0.4	(111)	1.2	0.2	0.5
$\sin^2 \theta_{\rm eff}^{\ell}$ (°)	16	3.0	1.1	2.8	2.5	1.1	1.4	-	1.5	0.9
$\Delta \alpha_{\rm had}$ (°)	4.7	36	6	36	25	9	12	35	_	5
				ILC	C/GigaZ pi	rospects				
M_H [GeV]	< 0.1	$^{+7.4}_{-7.0}$	$^{+2.5}_{-2.3}$	$^{+6.9}_{-6.6}$	$^{+3.9}_{-1.9}$	$^{+4.3}_{-4.1}$	$^{+0.9}_{-0.8}$	$^{+3.3}_{-3.0}$	$^{+4.3}_{-4.1}$	$^{+0.3}_{-0.3}$
M_W [MeV]	5	2.3	1.3	1.9	-	1.7	0.3	1.3	0.7	0.3
M_Z [MeV]	2.1	2.7	1.0	2.6	2.5		0.4	1.3	1.9	0.2
$m_t [{ m GeV}]$	0.1	0.8	0.2	0.7	0.6	0.5		0.3	0.4	0.2
$\sin^2 \theta_{ m eff}^{\ell}$ (°)	1.3	2.3	1.0	2.0	1.7	1.2	0.2	-	1.5	0.1
$\Delta \alpha_{\rm had} (\circ)$	4.7	6.4	3.0	5.6	2.7	4.1	0.8	3.9		0.2

 $^{(\circ)} \mathrm{In}$ units of $10^{-5}.~^{(\star)} \mathrm{In}$ units of 10^{-4}

Recontres de Blois 2015