Fits of EWPO in the SM with ILC/FCC-ee Precision

Roman Kogler (University of Hamburg)

First FCC-ee Mini-workshop on Precision Observables and Radiative Corrections CERN, July 13-14, 2015

Prediction of Top Quark Mass

What precision is needed to see significant deviations between measurements and predictions?

Prediction of Higgs Mass

 M_H predictions from loop effects since the discovery of the top quark 1995

weaker constraints than for mt because of logarithmic dependence

 still, the fits have always predicted
 M_H correctly!

Again: what precision should we strive for? What are the major challenges?

Present: Experimental Input

Fit is overconstrained

- all free parameters measured
 - most input from e⁺e⁻ colliders
 - M_Z : 2 · 10⁻⁵
 - but crucial input from hadron colliders:
 - m_t : $4 \cdot 10^{-3}$
 - M_H : 2 · 10⁻³
 - M_W: 2·10⁻⁴
 - remarkable experimental precision (<1%)
- require precision calculations!

$M_H \; [\text{GeV}]^{(\circ)}$	125.14 ± 0.24	LHC
$\overline{M_W}$ [GeV]	80.385 ± 0.015	
Γ_W [GeV]	2.085 ± 0.042	l lev.
$\overline{M_Z \; [\text{GeV}]}$	91.1875 ± 0.0021	
$\Gamma_Z [{\rm GeV}]$	2.4952 ± 0.0023	
$\sigma_{ m had}^0$ [nb]	41.540 ± 0.037	LEP
R^0_ℓ	20.767 ± 0.025	
$A_{ m FB}^{0,\ell}$	0.0171 ± 0.0010	
A_ℓ (*)	0.1499 ± 0.0018	SLD
$\sin^2 \theta_{\rm eff}^{\ell}(Q_{\rm FB})$	0.2324 ± 0.0012	
A_c	0.670 ± 0.027	
A_b	0.923 ± 0.020	
$A_{ m FB}^{0,c}$	0.0707 ± 0.0035	
$A_{ m FB}^{0,b}$	0.0992 ± 0.0016	
R_c^0	0.1721 ± 0.0030	
R_b^0	0.21629 ± 0.00066	
$\overline{m}_c [\text{GeV}]$	$1.27^{+0.07}_{-0.11}$	
$\overline{m}_b [{\rm GeV}]$	$4.20^{+0.17}_{-0.07}$	
$m_t [{ m GeV}]$	173.34 ± 0.76	Tev.+LHC
$\Delta \alpha_{\rm had}^{(5)}(M_Z^2)$	2757 ± 10	

Calculations

All observables calculated at 2-loop level

 M_W: full EW one- and two-loop calculation of fermionic and bosonic contributions [Awramik et al., PRD 69, 053006 (2004), PRL 89, 241801 (2002)]
 + 4-loop QCD correction [Chetyrkin et al., PRL 97, 102003 (2006)]

- sin² θ^{I}_{eff} : same order as M_W, calculations for leptons and all quark flavours
 - [Awramik et al, PRL 93, 201805 (2004), JHEP 11, 048 (2006), Nucl. Phys. B813, 174 (2009)]
- ▶ partial widths Γ_f : fermionic corrections known to two-loop level for all flavours (includes predictions for σ^{0}_{had}) [Freitas, JHEP04, 070 (2014)]
- ▶ Radiator functions: QCD corrections at N³LO [Baikov et al., PRL 108, 222003 (2012)]
- Γ_W: only one-loop EW corrections available, negligible impact on fit [Cho et al, JHEP 1111, 068 (2011)]
- all calculations include one- and two-loop QCD corrections and leading terms of higher order corrections

All EWPOs calculated at two-loop level or better

Theoretical Uncertainties

Estimation

• assume that perturbative expansion follows a geometric series $(a_n = a r^n)$:

For example:
$$\mathcal{O}(\alpha^2 \alpha_s) = \frac{\mathcal{O}(\alpha^2)}{\mathcal{O}(\alpha)} \mathcal{O}(\alpha \alpha_s)$$

- other methods (e.g. scale variation) not always feasible
 - but give ~similar results
- theoretical uncertainties smaller by a factor of 3-6 than measurements
 - for the first time, reasonable estimate for all observables
- important missing higher order terms:
 - $O(\alpha^3)$, $O(\alpha^2 \alpha_s)$, $O(\alpha \alpha_s^2)$, $O(\alpha^2_{bos})$ (in some cases), $O(\alpha_s^5)$ (rad. functions)

Observable	Exp. error	Theo. error	
M_W	15 MeV	4 MeV	
$\sin^2 \theta_{\rm eff}^l$	$1.6 \cdot 10^{-4}$	$0.5 \cdot 10^{-4}$	
Γ_Z	2.3 MeV	0.5 MeV	
$\sigma_{\text{had}}^0 = \sigma[e^+e^- \to Z \to \text{had.}]$	37 pb	6 pb	
$R_b^0 = \Gamma[Z \to b\overline{b}] / \Gamma[Z \to had.]$	$6.6 \cdot 10^{-4}$	$1.5 \cdot 10^{-4}$	
m_t	0.76 GeV	0.5 GeV	
		1	
torme			

important

new in tit

Ш

Future Improvements

Parameter	Present LHC	ILO	C/Giga	$LHC = LHC with 300 \text{ fb}^{-1}$ $ILC/GigaZ = \text{future } e^+e^-$ $collider. option to run on$
$M_H \; [\text{GeV}]$	$0.2 \rightarrow < 0.1$		< 0.1	Z-pole (w polarized beams)
M_W [MeV]	$15 \rightarrow 8$	\rightarrow	5	WW threshold
$M_Z [{ m MeV}]$	2.1 2.1		2.1	
$m_t [{ m GeV}]$	$0.8 \rightarrow 0.6$	\rightarrow	0.1	tt threshold scan
$\sin^2 \theta_{\mathrm{eff}}^{\ell} \ [10^{-5}]$	16 16	\rightarrow	1.3	$\delta A^{0,f}_{LR} \colon 0^{-3} \rightarrow 0^{-4} $
$\Delta \alpha_{\rm had}^5 (M_Z^2) \ [10^{-5}]$	$10 \rightarrow 4$		4	low energy data, better α_s
$R_l^0 \ [10^{-3}]$	25 25	\rightarrow	4	high statistics on Z-pole
$\kappa_V \ (\lambda = 3 \mathrm{TeV})$	$0.05 \rightarrow 0.03$	\rightarrow	0.01	direct measurement of BRs

• theoretical uncertainties reduced by a factor of 4 (esp. M_W and $sin^2\theta_{eff}$)

- implies three-loop calculations!
- exception: $\delta_{\text{theo}} m_t (LHC) = 0.25 \text{ GeV} (factor 2)$
- central values of input measurements adjusted to $M_H = 125 \text{ GeV}$

[Baak et al, arXiv:1310.6708]

Present: the Strong Coupling $\alpha_s(M_Z)$

$$\alpha_{s}(M_{Z}^{2}) = 0.1196 \pm 0.0028_{\exp} \pm 0.0006_{\delta_{\text{theo}}\mathcal{R}_{V,A}} \pm 0.0006_{\delta_{\text{theo}}\Gamma_{i}} \pm 0.0002_{\delta_{\text{theo}}\sigma_{\text{had}}^{0}}$$
$$= 0.1196 \pm 0.0030_{\text{tot}} \qquad \text{More accurate estimation of theo. uncertainties}$$
$$(previously: \delta_{\text{theo}} = 0.0001 \text{ from scale variations})$$

dominated by exp. uncertainty

Future: the Strong Coupling $\alpha_s(M_Z)$

LHC-300 Scenario

no improvement

ILC Scenario

- improvement of factor 4 or better possible
 - needs improvement from theory
 - present uncertainties: factor of 2.5 only

Fit Results:

$$\begin{split} \delta \alpha_s &= (6.5_{\exp} \oplus 2.5_{\delta_{\text{theo}}\Gamma_i} \oplus 2.3_{\delta_{\text{theo}}\mathcal{R}_{V,A}}) \cdot 10^{-4} \\ \delta \alpha_s &= (7.0_{\text{tot}}) \cdot 10^{-4} \quad \text{(present theory uncertainty: 12.2 \cdot 10^{-4})} \end{split}$$

Promises most precise measurement of $\alpha_s(M_Z)$

Present Results: Higgs

Ш

Ĥ

Future: Higgs Mass

- Logarithmic dependency on $M_H \rightarrow$ cannot compete with direct M_H meas.
 - no theory uncertainty:
 - future theory uncertainty (Rfit): $M_H = 12$
 - present day theory uncertainty:

$$M_{\rm H} = 125 \pm 7 \, {\rm GeV}$$

Rfit):
$$M_H = 125 + 10_{-9} \text{ GeV}$$

nty: $M_H = 125 + 20_{-17} \text{ GeV}$

 If EWPO central values unchanged (94 GeV), ~5σ discrepancy with measured Higgs mass

Future: Higgs Mass

- Logarithmic dependency on $M_H \rightarrow$ cannot compete with direct M_H meas.
 - no theory uncertainty: $M_H = 125 \pm 7 \text{ GeV}$
 - future theory uncertainty (Rfit): $M_H = 125 + 10_{-9}$ Ge
 - present day theory uncertainty: $M_H = 125^{+20}_{-17} \text{ GeV}$

:
$$M_{H} = 125 + 10_{-9}^{+10} \text{ GeV}$$

Mu = 125 + 20 GeV

If EWPO central values unchanged (94 GeV), ~5σ discrepancy with measured Higgs mass compromised by present theory uncertainty!

Present Results: Mw

$\Delta\chi^2$ profile vs M_W

- also shown: SM fit with minimal input: M_Z, G_F, Δα_{had}⁽⁵⁾(M_Z), α_s(M_Z), M_H, and fermion masses
 - good consistency
- M_H measurement allows for precise constraint on M_W
 - agreement at 1.4σ

▶ fit result for indirect determination of M_W (full fit w/o M_W):

$$M_W = 80.3584 \pm 0.0046_{m_t} \pm 0.0030_{\delta_{\text{theo}}m_t} \pm 0.0026_{M_Z} \pm 0.0018_{\Delta\alpha_{\text{had}}}$$
$$\pm 0.0020_{\alpha_S} \pm 0.0001_{M_H} \pm 0.0040_{\delta_{\text{theo}}M_W} \text{ GeV},$$
$$= 80.358 \pm 0.008_{\text{tot}} \text{ GeV}$$

more precise than direct measurement (15 MeV)

Present Results: Mw

$\Delta\chi^2$ profile vs M_W

- also shown: SM fit with minimal input: M_Z, G_F, Δα_{had}⁽⁵⁾(M_Z), α_s(M_Z), M_H, and fermion masses
 - good consistency
- M_H measurement allows for precise constraint on M_W
 - agreement at 1.4σ

▶ fit result for indirect determination of M_W (full fit w/o M_W):

$$M_W = 80.3584 \pm 0.0046_{m_t} \pm 0.0030_{\delta_{\text{theo}}m_t} \pm 0.0026_{M_Z} \pm 0.0018_{\Delta\alpha_{\text{had}}} \\ \pm 0.0020_{\alpha_S} \pm 0.0001_{M_H} \pm 0.0040_{\delta_{\text{theo}}M_W} \text{ GeV},$$

$$= 80.358 \pm 0.008_{\text{tot}} \text{ GeV} \quad \text{(Rfit: \pm 13 MeV)}$$

more precise than direct measurement (15 MeV)

Future: M_W

Present SM fit

80.34

Prospects for LHC

Prospects for ILC/GigaZ

Direct measurement (present/LHC/ILC)

80.35

80.36

 $\Delta\chi^2$

20

15

10

5

LHC-300 Scenario

- moderate improvement (~30%) of indirect constraint
 - theoretical uncertainties already important

ILC Scenario

 improvement of factor 3 possible, similar to direct measurement

Fit Results:

80.33

 $\delta M_W = 1.3_{\text{theo}} \oplus 1.9_{\text{exp}} \text{MeV} = 2.3_{\text{tot}} \text{MeV}$

Measurement uncertainty for ILC: <u>5</u> MeV

80.37

80.38

80.39

5σ

4σ

3σ

2σ

1σ

80.4

M_w [GeV]

G fitter

Present: Effective Weak Mixing Angle

• fit result for indirect determination of $sin^2\theta_{eff}^{I}$:

$$\sin^2 \theta_{\text{eff}}^{\ell} = 0.231488 \pm 0.000024_{m_t} \pm 0.000016_{\delta_{\text{theo}}m_t} \pm 0.000015_{M_Z} \pm 0.000035_{\Delta \alpha_{\text{had}}} \\ \pm 0.000010_{\alpha_S} \pm 0.000001_{M_H} \pm 0.000047_{\delta_{\text{theo}} \sin^2 \theta_{\text{eff}}^{f}} \\ = 0.23149 \pm 0.00007_{\text{tot}}$$

more precise than determination from LEP/SLD (1.6×10⁻⁴)

Future: Effective Weak Mixing Angle

LHC-300 Scenario

- Iarge improvement of indirect constraint
 - compromised by today's theoretical uncertainties

ILC Scenario

 Indirect constraint and direct measurement comparable precision

Fit Results:

$$\delta \sin^2 \theta_{\text{eff}}^f = (1.7_{M_W} \oplus 1.2_{M_Z} \oplus 0.1_{m_t} \oplus 1.5_{\Delta \alpha_{\text{had}}} \oplus 0.1_{\alpha_s}) \cdot 10^{-5}$$
$$\delta \sin^2 \theta_{\text{eff}}^f = (1.0_{\text{theo}} \oplus 2.0_{\text{exp}}) \cdot 10^{-5} = (2.3_{\text{tot}}) \cdot 10^{-5}$$

Measurement uncertainty for ILC: $1.3 \cdot 10^{-5}$

Future: M_W and $sin^2\theta_{eff}^I$

Present: Top Quark Mass

$\Delta \chi^{2} \text{ profile vs } m_{t}$ $\begin{array}{c} \text{ determination of } m_{t} \text{ from } m_{t}^{kin} \text{ world average [all of the second data } m_{t}^{kin} \text{ world average [all of the se$

 M_H allows for significantly more precise determination of m_t

$$m_t = 177.0 \pm 2.3_{M_{W, \sin^2\theta_{eff}}^f} \pm 0.6_{\alpha_s} \pm 0.5_{\Delta\alpha_{had}} \pm 0.4_{M_Z} \text{ Ge}$$
$$= 177.0 \pm 2.4_{exp} \pm 0.5_{theo} \text{ GeV}$$

- \blacktriangleright similar precision as determination from $\sigma_{t\overline{t}}$, good agreement
- dominated by experimental precision

Future: Top Quark Mass

LHC-300 Scenario

improvement due to improved precision on M_W

ILC Scenario

• Comparable precision due to M_W and $\sin^2 \theta_{eff}^{I}$ measurements $(M_W: \delta m_t = I \text{ GeV})$ $\sin^2 \theta_{eff}^{I}: \delta m_t = 0.9 \text{ GeV})$

Fit Results:

 $\delta m_t = 0.6_{M_W} \oplus 0.5_{M_Z} \oplus 0.3_{\sin^2 \theta_{\text{eff}}^f} \oplus 0.4_{\Delta \alpha_{\text{had}}} \oplus 0.2_{\alpha_s} \text{ GeV}$ $\delta m_t = 0.2_{\text{theo}} \oplus 0.7_{\text{exp}} \text{ GeV} = 0.8_{\text{tot}} \text{ GeV}$

similar precision as present world average of mtkin from hadron colliders

still dominated by experimental precision

Summary of Indirect Predictions

	Experimental input $[\pm 1\sigma_{exp}]$			Indirect determination $[\pm 1\sigma_{exp}, \pm 1\sigma_{theo}]$		
Parameter	Present	LHC	ILC/GigaZ	Present	LHC	ILC/GigaZ
M_H [GeV]	0.2	< 0.1	< 0.1	$^{+31}_{-26}, ^{+10}_{-8}$	$^{+20}_{-18}, ^{+3.9}_{-3.2}$	$^{+6.8}_{-6.5}, {}^{+2.5}_{-2.4}$
M_W [MeV]	15	8	5	6.0, 5.0	$5.2, \ 1.8$	$1.9, \ 1.3$
$M_Z [{ m MeV}]$	2.1	2.1	2.1	11, 4	$7.0, \ 1.4$	$2.5, \ 1.0$
$m_t [{ m GeV}]$	0.8	0.6	0.1	$2.4, \ 0.6$	$1.5, \ 0.2$	$0.7, \ 0.2$
$\sin^2 \theta_{\mathrm{eff}}^\ell$ [10 ⁻⁵]	16	16	1.3	4.5, 4.9	2.8, 1.1	$2.0, \ 1.0$
$\Delta \alpha_{\rm had}^5 (M_Z^2) \ [10^{-5}]$	10	4.7	4.7	42, 13	$36, \ 6$	$5.6, \ 3.0$
$R_l^0 \ [10^{-3}]$	25	25	4	-	_	—
$\alpha_S(M_Z^2) \ [10^{-4}]$	_	_	_	40, 10	39, 7	$6.4, \ 6.9$
$\overline{S _{U=0}}$	_	_	_	$0.094, \ 0.027$	0.086, 0.006	$0.017, \ 0.006$
$T _{U=0}$	—	—	_	0.083, 0.023	$0.064, \ 0.005$	$0.022, \ 0.005$
$\kappa_V \ (\lambda = 3 \mathrm{TeV})$	0.05	0.03	0.01	0.02	0.02	0.01

Summary of Indirect Predictions

Experimental input $[\pm 1\sigma_{exp}]$			Indirect determination $[\pm 1\sigma_{exp}, \pm 1\sigma_{theo}]$			
Parameter	Present	LHC	ILC/GigaZ	Present	LHC	ILC/GigaZ
M_H [GeV]	0.2	< 0.1	< 0.1	$+31 +10 \\ -26 , -8$	$^{+20}_{-18}, ^{+3.9}_{-3.2}$	$^{+6.8}_{-6.5}, {}^{+2.5}_{-2.4}$
M_W [MeV]	15	8	5	6.0, 5.0	5.2, 1.8	(1.9, 1.3)
$M_Z \; [{ m MeV}]$	2.1	2.1	2.1	11, 4	$7.0, \ 1.4$	$2.5, \ 1.0$
$m_t [{ m GeV}]$	0.8	0.6	0.1	$2.4, \ 0.6$	(1.5, 0.2)	0.7, 0.2
$\sin^2 \theta_{\rm eff}^{\ell} \ [10^{-5}]$	16	16	1.3	4.5, 4.9	2.8, 1.1	2.0, 1.0
$\Delta \alpha_{\rm had}^5 (M_Z^2) \ [10^{-5}]$	10	4.7	4.7	42, 13	36, 6	$5.6, \ 3.0$
$R_l^0 \ [10^{-3}]$	25	25	4	_	_	_
$\alpha_{S}(M_{Z}^{2}) \ [10^{-4}]$	_	—	_	40, 10	$39, \ 7$	$6.4, \ 6.9$
$S _{U=0}$	_	_	_	$0.094, \ 0.027$	0.086, 0.006	0.017, 0.006
$T _{U=0}$	_	_	_	0.083, 0.023	$0.064, \ 0.005$	0.022, 0.005
$\kappa_V \ (\lambda = 3 \mathrm{TeV})$	0.05	0.03	0.01	0.02	0.02	0.01

- Theory uncertainty needs to be reduced if we want to achieve the ultimate precision with the LHC!
- Future e⁺e⁻ collider: fantastic possibilities for consistency tests of the SM on loop level and NP constraints

Summary

Uncertainties on Mw

Impact of individual uncertainties on δM_W in fit (numbers in MeV)

Improved theoretical precision needed already for the LHC-300!

Additional Material

Interpreteation of m_t Measurements

What about accuracy?

- top mass definition
 - EFT, factorization: hard function, universal jet-function, non-pert. soft function [Moch et al, arXiv:1405.4781]
 - MC mass is (most likely) related to the low scale short-distance mass in the jet function [Hoang, arXiv:1412.3649]
 - but: no quantitative statement available
 - relating m_t^{kin} to $m_t^{pole} : \Delta m_t \ge \Lambda_{QCD}$
- colour structure and hadronisation
 - partly included in experimental uncertainties
 - study on kinematic dependencies of m_t
- calculating m_t(m_t) from m_t^{pole}
 - QCD (three-loop): $\Delta m_t \approx 0.02 \text{ GeV}$
 - EW (two-loop): $\Delta m_t \approx 0.1 \text{ GeV}$

[Kniehl et al., arXiv:1401.1844]

Ш

H I

Measurements of M_H

Discovery of a Higgs boson

- cross section times branching ratios, spin, parity: compatible with SM Higgs boson
 - assume it's the SM Higgs boson
 - (or a BSM Higgs boson h in the decoupling region)
 - test the consistency of the SM including it
- ▶ best mass measurements: $H \rightarrow \gamma \gamma$, $H \rightarrow 4I$
 - ATLAS: 125.4 ± 0.4 GeV [ATLAS, 1406.3827]
 - CMS: 125.0 ± 0.3 GeV [CMS-PAS-HIG-14-009]
 - weighted average: 125.14 ± 0.24 GeV
 - change between fully uncorrelated and fully correlated systematic uncertainties is minor: $\delta M_H : 0.24 \rightarrow 0.32 \text{ GeV}$
 - accuracy: 0.2% !

- sufficient for electroweak fit (more later)

$Measurements \ of \ M_W$

Ш

11

SM Fit Results

black: direct measurement (data) orange: full fit light-blue: fit excluding input from row

goodness of fit, p-value:
 χ²_{min}= 17.8 Prob(χ²_{min}, 14) = 21%
 Pseudo experiments: 21 ± 2 (theo)%

• $\chi^2_{min}(Z \text{ widths in } I \text{-loop}) = 18.0$

• χ^{2}_{min} (no theory uncertainties) = 18.2

- \blacktriangleright no individual value exceeds 3σ
- Iargest deviations in b-sector:
 - $A^{0,b}_{FB}$ with 2.5σ
 - \rightarrow largest contribution to χ^2
- ▶ small pulls for M_H, M_Z
 - input accuracies exceed fit requirements

Calculation of M_W

- Full EW one- and two-loop calculation of fermionic and bosonic contributions
- One- and two-loop QCD corrections and leading terms of higher order corrections
- Results for Δr include terms of order
 O(α), O(αα_s), O(αα_s²), O(α²_{ferm}),
 O(α²_{bos}), O(α²α_smt⁴), O(α³mt⁶)
- Uncertainty estimate:
 - missing terms of order O(α²α_s): about 3 MeV (from O(α²α_sm_t⁴))
 - electroweak three-loop correction *O*(α³): < 2 MeV
 - three-loop QCD corrections $O(\alpha \alpha_s^3)$: < 2 MeV
 - Total: $\delta M_W \approx$ 4 MeV

Ш

[M Awramik et al., Phys. Rev. D69, 053006 (2004)] [M Awramik et al., Phys. Rev. Lett. 89, 241801 (2002)]

26

Calculation of $sin^2(\theta_{eff})$

- Effective mixing angle: $\sin^2 \theta_{\text{eff}}^{\text{lept}} = \left(1 - M_{\text{W}}^2 / M_{\text{Z}}^2\right) \left(1 + \Delta \kappa\right)$
- Two-loop EW and QCD correction to Δκ known, leading terms of higher order QCD corrections
- fermionic two-loop correction about 10⁻³, whereas bosonic one 10⁻⁵
- Uncertainty estimate obtained with different methods, geometric progression:

 $\mathcal{O}(\alpha^2 \alpha_{\rm s}) = \frac{\mathcal{O}(\alpha^2)}{\mathcal{O}(\alpha)} \mathcal{O}(\alpha \alpha_{\rm s}).$ $\mathcal{O}(\alpha^2 \alpha_{\rm s}) \text{ beyond leading } m_{\rm t}^4 \quad 3.3 \dots 2.8 \times 10^{-5}$ $\mathcal{O}(\alpha \alpha_{\rm s}^3) \qquad 1.5 \dots 1.4$ $\mathcal{O}(\alpha^3) \text{ beyond leading } m_{\rm t}^6 \qquad 2.5 \dots 3.5$ $\text{Total: } \delta \sin^2 \theta^1_{\rm eff} \approx 4.7 \ 10^{-5}$

[M Awramik et al, Phys. Rev. Lett. 93, 201805 (2004)] [M Awramik et al., JHEP 11, 048 (2006)]

Calculation of $sin^2(\theta^{bb}_{eff})$

- Calculation of sin²θ_{eff} for b-quarks more involved, because of top quark propagators in the Z→bb vertex
- Investigation of known discrepancy between sin²θ_{eff} from leptonic and hadronic asymmetry measurements
- Two-loop EW correction only recently completed, effect of O(10⁻⁴)
- Now sin²θ^{bb}_{eff} known at the same order as sin²θ_{eff} for leptons and light quarks
- Uncertainty assumed to be of same size as for sin²θ_{eff}:

$\delta \sin^2 \theta^{bb}_{eff} \approx 4.7 \ 10^{-5}$

Ш

[M Awramik et al, Nucl. Phys. B813, 174 (2009)]

Calculation of R⁰_b

Full two-loop calculation of $Z \rightarrow bb$

[A. Freitas et al., JHEP 1208, 050 (2012) Erratum ibid. 1305 (2013) 074]

• The branching ratio R^{0}_{b} : partial decay width of $Z \rightarrow b\overline{b}$ and $Z \rightarrow q\overline{q}$

$$R_b \equiv \frac{\Gamma_b}{\Gamma_{\text{had}}} = \frac{\Gamma_b}{\Gamma_d + \Gamma_u + \Gamma_s + \Gamma_c + \Gamma_b} = \frac{1}{1 + 2(\Gamma_d + \Gamma_u)/\Gamma_b}$$

- Contribution of same terms as in the calculation of $\sin^2\theta^{bb}_{eff}$ \rightarrow cross-check the two results, found good agreement
- ► Two-loop corrections small compared to experimental uncertainty (6.6 · 10⁻⁴)

	I-loop EW and QCD correction to FSR	2-loop EW correction	2-loop EW and 2+3-loop QCD correction to FSR	I+2-loop QCD correction to gauge boson selfenergies
$M_{\rm H}$ [GeV]	$\mathcal{O}(\alpha) + \text{FSR}_{\alpha,\alpha_{s},\alpha_{s}^{2}}$ [10 ⁻⁴]	$ \begin{bmatrix} \mathcal{O}(\alpha_{\rm ferm}^2) \\ [10^{-4}] \end{bmatrix} $	$ \begin{array}{c} \mathcal{O}(\alpha_{\text{ferm}}^2) + \text{FSR}_{\alpha_{\text{s}}^3, \alpha \alpha_{\text{s}}, m_b^2 \alpha_{\text{s}}, m_b^4} \\ [10^{-4}] \end{array} $	$ \begin{array}{c c} \mathcal{O}(\alpha\alpha_{\rm s},\alpha\alpha_{\rm s}^2) \\ [10^{-4}] \end{array} $
100	-35.66	-0.856	-2.496	-0.407
200	-35.85	-0.851	-2.488	-0.407
400	-36.09	-0.846	-2.479	-0.406

Radiator Functions

- Partial widths are defined inclusively: they contain QCD and QED contributions
- Corrections can be expressed as radiator functions $R_{A,f}$ and $R_{V,f}$

$$\Gamma_{f\bar{f}} = N_c^f \frac{G_F M_Z^3}{6\sqrt{2}\pi} \left(|g_{A,f}|^2 R_{A,f} + |g_{V,f}|^2 R_{V,f} \right)^2$$

- High sensitivity to the strong coupling α_s
- Full four-loop calculation of QCD Adler function available (N³LO)
- Much reduced scale dependence
- Theoretical uncertainty of 0.1 MeV, compare to experimental uncertainty of 2.0 MeV

[P. Baikov et al., Phys. Rev. Lett. 108, 222003 (2012)] [P. Baikov et al Phys. Rev. Lett. 104, 132004 (2010)]

Modified Higgs Couplings

Study of potential deviations of Higgs couplings from SM

- BSM modelled as extension of SM through effective Lagrangian
 - Leading corrections only
- Benchmark model:
 - Scaling of Higgs-vector boson (K_V) and Higgs-fermion couplings (K_F)
 - No additional loops in the production or decay of the Higgs, no invisible Higgs decays and undetectable width
- Main effect on EWPO due to modified Higgs coupling to gauge bosons (K_V)
 - Involving the longitudinal d.o.f.
- Most BSM models: κ_V < 1</p>
- \blacktriangleright Additional Higgses typically give positive contribution to $M_{\rm W}$

$$L_{V} = \frac{h}{v} \left(2\kappa_{V} m_{W}^{2} W_{\mu} W^{\mu} + \kappa_{V} m_{Z}^{2} Z_{\mu} Z^{\mu} \right)$$
$$L_{F} = -\frac{h}{v} \left(\kappa_{F} m_{t} \bar{t}t + \kappa_{F} m_{b} \bar{b}b + \kappa_{F} m_{\tau} \bar{\tau}\tau \right)$$

