34th International Conference on High Energy Physics July 29th – August 5th 2008 Philadelphia, USA

Revisiting the global electroweak fit of the Standard Model and Beyond

Johannes Haller (Universität Hamburg, Germany) for the Gfitter Group^{*)}

^{*)} H. Flächer (CERN), M. Goebel (Univ. Hamburg, DESY), J. H. (Univ. Hamburg), A. Höcker (CERN), K. Mönig (DESY), J. Stelzer (DESY)

- Gfitter: A Generic Fitter Project for HEP Model Testing
- Aim: provide a reliable framework for involved fitting problems in the LHC era (and beyond).

Software:

- abstract object-oriented code in C++ using ROOT functionality
- core package:
 - tools for data handling, fitting, statistical analyses
- physics: plug-in packages
 - GSM: Library for the Standard Model fit to the electroweak precision data (this talk)
 - G2HDM: Library for the 2HDM extension of the SM (this talk)
 - GSUSY: Library for supersymmetric extensions of the SM (in preparation)

Gfitter features:

- consistent treatment of statistical, systematic and theoretical errors, correlations, and inter-parameter dependencies
 - theoretical uncertainties: Rfit prescription [A Höcker et al., EPJ C21, 225 (2002)]
 - theory uncertainties included in χ^2 estimator with flat likelihood in allowed ranges

fitting:

- several minimization algorithms available, default: TMinuit
- caching of computation results between fit steps
 - only theory predictions are recalculated that depend on modified parameters
 - substantial speed improvement
- advanced statistical analyses:
 - e.g. parameter scans, contours, MC toy analyses, goodness-of-fit p-value, ...

More details:

Gfitter homepage: http://cern.ch/Gfitter

- First theoretical library implemented in Gfitter framework: SM predictions of electroweak precision observables
- State-of-the art calculations (OMS scheme); in particular:
 - **M**_W and $sin^2\theta_{eff}^{I}$: full two-loop + leading beyond-two-loop correction

[M. Awramik et al., Phys. Rev D69, 053006 (2004 and ref.][M. Awramik et al., JHEP 11, 048 (2006) and refs.]

radiator functions: N³LO of the massless QCD Adler function

[P.A. Baikov et al., Phys. Rev. Lett. 101 (2008) 012022]

- Calculations and fit results thoroughly cross-checked against ZFitter (Fortran) package → excellent agreement
- Free fit parameters:
 - $\blacksquare M_Z, M_H, m_t, \Delta \alpha_{had}^{(5)}(M_Z^2), \alpha_S(M_Z^2), \overline{m}_c, \overline{m}_b$
 - parameters for theoretical uncertainties on $M_W (\delta M_W = 4-6 \text{GeV})$, sin² $\theta^{I}_{eff} (\delta \sin^2 \theta^{I}_{eff} = 4.7 \cdot 10^{-5})$ (and the electroweak form factors ρ_Z^{f} , κ_Z^{f})

Electroweak fit: experimental input

Parameter	Input value		
<i>M</i> _Z [GeV]	91.1875 ± 0.0021		
Γ_Z [GeV]	2.4952 ± 0.0023		
σ_{had}^0 [nb]	41.540 ± 0.037		
R^0_ℓ	20.767 ± 0.025		
$A_{\rm FB}^{0,\ell}$	0.0171 ± 0.0010		
$A_{\ell}^{(\star)}$	0.1499 ± 0.0018		
A_c	0.670 ± 0.027		
A_b	0.923 ± 0.020		
$A_{\rm FB}^{0,c}$	0.0707 ± 0.0035		
$A_{\rm FB}^{0,b}$	0.0992 ± 0.0016		
R_c^0	0.1721 ± 0.0030		
R_{h}^{0}	0.21629 ± 0.00066		
$\sin^2 \Theta^{\ell}_{\mathrm{eff}}(Q_{\mathrm{FB}})$	0.2324 ± 0.0012		
M_H [GeV] $^{(\circ)}$	Likelihood ratios		
M_W [GeV]	80.398 ± 0.025		
Γ_W [GeV]	2.106 ± 0.050		
\overline{m}_c [GeV]	1.25 ± 0.09		
\overline{m}_b [GeV]	4.20 ± 0.07		
m_t [GeV]	172.4±1.2		
$\Delta lpha_{ m had}^{(5)}(M_Z^2) \ ^{(\dagger riangle)}$	2768 ± 22		
$\alpha_s(M_Z^2)$	_		

	Usage	of	latest	experimental	results:
--	-------	----	--------	--------------	----------

- Z-pole observables: LEP/SLD results [ADLO+SLD, Phys. Rept. 427, 257 (2006)]
- M_W and Γ_W: weighted mean of LEP + Tevatron [ADLO, hepex/0612034] [CDF, Phys Rev. D77, 112001 (2008)] [CDF, Phys. Rev. Lett. 100, 071801 (2008)] [CDF+D0, Phys. Rev. D 70, 092008 (2004)]
- m_c, m_b: world averages [PDG, J. Phys. G33,1 (2006)]
- m_t: latest Tevatron average [CDF+D0, this conference]
- $\Delta \alpha_{had}^{(5)}(M_Z^2)$: [K. Hagiwara et al., Phys. Lett. B649, 173 (2007)] + Gfitter rescaling mechanism to account for α_s -dependency
- Fits are performed in two versions:
 - Standard fit: all data except results from direct Higgs searches
 - Complete fit: all data including results from direct Higgs searches at LEP and Tevatron

Johannes Haller

Gfitter - Revisiting the electroweak fit of the SM and Beyond

Electroweak fit: fit results

Convergence and naïve p-values:

- standard fit: χ^2_{min} =16.4 \rightarrow Prob(χ^2_{min} ,13)=0.23
- complete fit: χ^2_{min} =17.9 \rightarrow Prob(χ^2_{min} ,14)=0.21

Pull values of standard fit:

- no value exceeds 3σ
- known tension: leptonic and hadronic asymmetries

• α_{S} from *complete fit*: $\alpha_{s}(M_{Z}^{2}) = 0.1194^{+0.0028}_{-0.0027} \pm 0.0001$

- first error is experimental fit error
- second error due to missing QCD orders:
 - incl. variation of renorm. scale from $M_Z/2$ to $2M_Z$ and massless terms of order/beyond $\alpha_S^{-5}(M_Z)$ and massive terms of order/beyond $\alpha_S^{-4}(M_Z)$
- excellent agreement with recent N³LO result from
 - τ decay [M. Davier et al., arXiv:0803.0979]

Electroweak fit: results on M_H

M_H from standard fit.

- central value $\pm 1\sigma$: $M_H = 80^{+30}_{-23}$ GeV
- 2σ interval: [39, 156] GeV
- 3σ interval: [26, 210] GeV
- theory errors with Rfit scheme →smaller n_{dof} and smaller χ^2_{min}
- M_H from *complete fit* (i.e. incl. direct Higgs searches):
 - χ² interpretation of search results: deviation of log-likelihood-ratio in data and (S+B) hypothesis.
 - central value $\pm 1\sigma$: $M_H = 120^{+15}_{-5}$ GeV
 - 2σ interval: [114.4, 144] GeV
 - conservative CL_s-like interpretation
 - central value $\pm 1\sigma$: $M_H = 117^{+21}_{-2}$ GeV
 - 2σ interval: [114.2, 154] GeV

M_µ [GeV]

Electroweak fit: 2-dim results

- Gfitter allows 1-dim, 2-dim scans and contour plots
- 3 different types of fits:
 - indirect (i.e. excluding the respective measurements)
 - including the measurements
 - including in addition the results from direct Higgs searches

- Indirect fit results agree with experimental values
- Results from Higgs searches significantly reduce the allowed parameter space.

Electroweak fit: statistical analysis

- Gfitter allows statistical analysis of fit results
- Example: study of the Gaussian properties of the $\Delta \chi^2$ estimator
 - good agreement of CL from MC toy with Gaussian approximation using Prob().
- Example: evaluation of p-value of SM fit
 - MC toy with 10000 experiments.
 - good agreement with ideal χ² function

result:

p-value (data|SM) = $0.220 \pm 0.004_{-0.029}$

Johannes Haller

Gfitter - Revisiting the electroweak fit of the SM and Beyond

Electroweak fit: prospects

LHC, ILC (+GigaZ)

exp. improvement on M_W, m_t, sin²θ^I_{eff}, R_I⁰
 improved Δα_{had}⁽⁵⁾(M_Z²) needed, e.g. σ(Δα_{had}⁽⁵⁾)~7·10⁻⁵

[F. Jegerlehner, hep-ph/0105283]

Overstitu	Expected uncertainty				
Quantity	Present	LHC	ILC	GigaZ (ILC)	
$M_W [MeV]$	25	15	15	6	
$m_t \; [\; {\rm GeV}]$	1.2	1.0	0.2	0.1	
$\sin^2 \Theta^{\ell}_{\rm eff} \ [10^{-5}]$	17	17	17	1.3	
$R_{\ell}^0 \; [10^{-2}]$	2.5	2.5	2.5	0.4	
$\Delta \alpha_{\rm had}^{(5)}(M_Z^2) \ [10^{-5}]$	22 (7)	22 (7)	22 (7)	22 (7)	
$M_H (= 120 \text{ GeV}) [\text{GeV}]$ $\alpha_s (M_Z^2) [10^{-4}]$	$^{+56}_{-41} \begin{pmatrix} +53\\ -39 \end{pmatrix} \begin{bmatrix} +39\\ -31 \end{bmatrix}$ 28	$^{+46}_{-35} \begin{pmatrix} +42\\ -33 \end{pmatrix} \begin{bmatrix} +30\\ -25 \end{bmatrix}$ 28	$^{+40}_{-32} \begin{pmatrix} +36\\ -29 \end{pmatrix} \begin{bmatrix} +24\\ -20 \end{bmatrix}$ 27	$^{+26}_{-23} \begin{pmatrix} +20\\ -18 \end{pmatrix} \begin{bmatrix} +8\\ -8 \end{bmatrix}$	
S(Z/1 -]					

[ATLAS, Physics TDR (1999)][CMS, Physics TDR (2006)][A. Djouadi et al., arXiv:0709.1893] [I. Borjanovic, EPJ C39S2, 63 (2005)][S. Haywood et al., hep-ph/0003275] [R. Hawkings, K. Mönig, EPJ direct C1, 8 (1999)] [A. H. Hoang et al., EPJ direct C2, 1 (2000)][M. Winter, LC-PHSM-2001-016]

Fits:

- not used: α_{s} , M_H measurements
- assume M_H=120 GeV
- improvement of M_H prediction
 - Ito be confronted with direct measurement → goodness-of-fit
 - broad minima: Rfit treatment of theo. uncertainties
- GigaZ: significant improvement for α_S(M_Z²)

Johannes Haller

Gfitter - Revisiting the electroweak fit of the SM and Beyond

2HDM fit: experimental input and theory G fitter ^{2H}_{DM}

Implementation of 2HDM (Type-II) as first extension of SM

2HDM (Type-II)

- additional Higgs doublet
- one doublet couples to u-type, one doublet couples to d-type quarks
- 6 free parameters $\rightarrow M_{H\pm}$, M_{A0} , M_{H0} , M_{h} , $\tan\beta$, $|\alpha|$
- so far: only looked at processes sensitive to charged Higgs $\rightarrow M_{H+}$, tan β

observable	input value	exp. ref	calculation
R _b ⁰	0.21629 ± 0.00066	[ADLO, Phys. Rept.427, 257 (2006)	[H. E. Haber and H. E. Logan, Phys. Rev. D62, 015011 (2000)]
BR (B→X _s γ)	(3.52±0.23±0.09)·10 ⁻⁴	[HFAG, latest update]	[M. Misiak et al., Phys. Rev. Lett. 98, 022002 (2007)]
BR (Β→τν)	(1.41±0.43)· 10 ^{−4}	[HFAG, latest update]	[W. S. Hou, Phys. Rev. D48, 2342 (1993)]
BR (B→μν)	>1.7·10 ⁻⁶ at 90% CL	[HFAG, arXiv:0704.3575]	[W. S. Hou, Phys Rev. D48, 2342 (1993)]
BR (K \rightarrow μ ν)/ BR(π \rightarrow μ ν)	1.004±0.007	[FlaviaNet,, arXiv:0801.1817]	[FlaviaNet, arXiv:0801.1817]
BR(B→Dτν)/ BR(B→Deν)	0.416±0.117±0.052	[Babar, Phys. Rev. Lett 100, 021801 (2008)]	[J. F. Kamenik and F. Mescia, arXiv:0802.3790]

2HDM fit: fit results

- Overlay of individual 95% CL excluded regions
 - assuming n_{dof}=1 and 2-sided limits
- Combined fit:
 - excluded area depends on assumptions (n_{dof}=1, n_{dof}=2)
 - resolved by MC toy study
 - 2-sided limits
 - χ^2_{min} =2.3 at M_H=850 and tan β =10
- Excluded at 95% CL:
 - small tanβ
 - for all tanβ
 - M_H < 240 GeV</p>
 - M_H< (8.6 tanβ) GeV</p>

Gfitter - Revisiting the electroweak fit of the SM and Beyond

10

20

30

40

50

70 tan_e

60

Gfitter is a new SW framework for involved fitting problems

- First theory package: Revisit of the electroweak fit of the SM
 - Iatest theoretical calculations and experimental results
 - advanced studies of the statistical properties of the fit
 - inclusion of direct Higgs searches
- Example for SM extension: 2HDM (Type-II)

Future steps:

- publication of results expected soon
- continued support for SM and 2HDM fits: http://cern.ch/Gfitter
- implementation of more theories, e.g. supersymmetric models

Back-up slides

Johannes Haller Gfitter - Revisiting the electroweak fit of the SM and Beyond

Pull values of complete fit

 Results for M_H in the standard fit excluding all sensitive observables, except for the one given.

Additional results of the electroweak fit

- Comparison of standard treatment of theoretical uncertainties with Rfit treatment
- 2-dim scan: $\Delta \alpha_{had}^{(5)}(M_7^2)-M_H$
- p-value of the SM fit for fixed values of M_{H} (using m_t=172.6±1.4 GeV) [arXiv:0803.1683]

exclusion

95% CL

Ь

100

150

200

250

M_u [GeV]

50

p-value

10⁻¹

 10^{-2}

 10^{-3}

M_H [GeV]