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Introduction

The H discovery
‣ something to celebrate
‣ something to contemplate

The SM incorporates the minimal 
version of the scalar sector
‣ is there a single Higgs doublet?

The electroweak fit is a powerful tool to study the scalar 
sector from all perspectives 
‣ in the SM
‣modified H couplings
‣ test extensions of the scalar sector
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[Philip Tanedo, quantumdiaries.org]
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The Electroweak Sector of the SM

Electroweak sector given by 3 parameters

‣ once v, g, g’ are known, all other parameters are fixed 

Use the three most precise parameters
‣α : Δα/α = 3×10-10

‣GF : ΔGF/GF = 5×10-7

‣MZ : ΔMZ/MZ = 2×10-5

‣measure more than the minimal set 
of parameters to test the theory!

3

MW =
v|g|
2

MZ =
v
p

g2 + g02

2

cos ✓W =

MW

MZ

M2
W =

M2
Z

2

0

@1 +

s

1�
p
8⇡↵

GFM2
Z

1

A



Roman Kogler The global electroweak fit 

The Electroweak Sector of the SM

Electroweak sector given by 3 parameters

‣ once v, g, g’ are known, all other parameters are fixed 

Use the three most precise parameters
‣α : Δα/α = 3×10-10

‣GF : ΔGF/GF = 5×10-7

‣MZ : ΔMZ/MZ = 2×10-5

‣measure more than the minimal set 
of parameters to test the theory!

3

MW =
v|g|
2

MZ =
v
p

g2 + g02

2

cos ✓W =

MW

MZ

M2
W =

M2
Z

2

0

@1 +

s

1�
p
8⇡↵

GFM2
Z

1

A

M2
W =

M2
Z

2

0

@1 +

s

1�
p
8⇡↵(1 +�r)

GFM2
Z

1

A

Radiative corrections

‣ modification of propagators and vertices 

‣ electroweak form factors ρ, κ, Δr
‣ depend on all parameters 

of the theory (mt, MH, αs...)

6 Higgs Hunting – Orsay 2010 Andreas Hoecker   –   Electroweak Constraints on Higgs Boson 

 which is 19σ away from the experimental 
value obtained by combining all asymmetry 
measurements:  

Radiative corrections –                             
modifying propagators and vertices 

Significance of radiative corrections 
can be illustrated by verifying tree level 
relation:  

  
sin2θW =1−

MW
2

MZ
2

  

MW = (80.399±0.023) GeV
MZ = (91.1875±0.0021) GeV

 one predicts:   

•  Using the measurements: 

  sin2θW = 0.23151±0.00011

  sin2θW = 0.22284±0.00045
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Top Quark Mass from Loop Effects

‣mt predictions from loop effects since 1990

‣ official LEPEWWG fit since 1993

‣ the fits have always been able to predict mt correctly!

4



Roman Kogler The global electroweak fit 

The Electroweak Fit
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Disclaimer: 
‣ there are several groups who routinely perform the electroweak fit 
‣ there are small differences in the methodology, the results agree very well
‣ I will focus on results from the Gfitter group [Gfitter group, EPJC 74, 3046 (2014)]



Fit is overconstrained

‣ all free parameters measured
(αs(MZ) unconstrained in fit)

• most input from e+e− colliders
- MZ : 0.002%

• but crucial input from 
hadron colliders:
- mt : 0.4%

- MW :  0.02%

- MH :   0.2%

• remarkable precision (<1%)

‣ require precision calculations
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2 Update of the global electroweak fit 6

Free w/o exp. input w/o exp. input
Parameter Input value

in fit
Fit Result

in line in line, no theo. unc

MH [GeV](�) 125.14± 0.24 yes 125.14± 0.24 93+25
�21 93+24

�20

MW [GeV] 80.385± 0.015 – 80.364± 0.007 80.358± 0.008 80.358± 0.006

�W [GeV] 2.085± 0.042 – 2.091± 0.001 2.091± 0.001 2.091± 0.001

MZ [GeV] 91.1875± 0.0021 yes 91.1880± 0.0021 91.200± 0.011 91.2000± 0.010

�Z [GeV] 2.4952± 0.0023 – 2.4950± 0.0014 2.4946± 0.0016 2.4945± 0.0016

�0
had [nb] 41.540± 0.037 – 41.484± 0.015 41.475± 0.016 41.474± 0.015

R0
` 20.767± 0.025 – 20.743± 0.017 20.722± 0.026 20.721± 0.026

A0,`
FB 0.0171± 0.0010 – 0.01626± 0.0001 0.01625± 0.0001 0.01625± 0.0001

A`
(?) 0.1499± 0.0018 – 0.1472± 0.0005 0.1472± 0.0005 0.1472± 0.0004

sin2✓`e↵(QFB) 0.2324± 0.0012 – 0.23150± 0.00006 0.23149± 0.00007 0.23150± 0.00005

Ac 0.670± 0.027 – 0.6680± 0.00022 0.6680± 0.00022 0.6680± 0.00016

Ab 0.923± 0.020 – 0.93463± 0.00004 0.93463± 0.00004 0.93463± 0.00003

A0,c
FB 0.0707± 0.0035 – 0.0738± 0.0003 0.0738± 0.0003 0.0738± 0.0002

A0,b
FB 0.0992± 0.0016 – 0.1032± 0.0004 0.1034± 0.0004 0.1033± 0.0003

R0
c 0.1721± 0.0030 – 0.17226+0.00009

�0.00008 0.17226± 0.00008 0.17226± 0.00006

R0
b 0.21629± 0.00066 – 0.21578± 0.00011 0.21577± 0.00011 0.21577± 0.00004

mc [GeV] 1.27+0.07
�0.11 yes 1.27+0.07

�0.11 – –

mb [GeV] 4.20+0.17
�0.07 yes 4.20+0.17

�0.07 – –

mt [GeV] 173.34± 0.76 yes 173.81± 0.85(5) 177.0+2.3
�2.4

(5) 177.0± 2.3

�↵
(5)
had(M

2
Z)

(†4) 2757± 10 yes 2756± 10 2723± 44 2722± 42

↵s(M2
Z) – yes 0.1196± 0.0030 0.1196± 0.0030 0.1196± 0.0028

(�)Average of the ATLAS [48] and CMS [49] measurements assuming no correlation of the systematic uncertainties.
(?)Average of the LEP and SLD A` measurements [12], used as two measurements in the fit.
(5)The theoretical top mass uncertainty of 0.5 GeV is excluded.
(†)In units of 10�5.
(4)Rescaled due to ↵s dependence.

Table 2: Input values and fit results for the observables used in the global electroweak fit. The first and
second columns list respectively the observables/parameters used in the fit, and their experimental values
or phenomenological estimates (see text for references). The third column indicates whether a parameter
is floating in the fit. The fourth column quotes the results of the fit including all experimental data. In
the fifth column the fit results are given without using the corresponding experimental or phenomenological
estimate in the given row (indirect determination). The last column shows for illustration the result using
the same fit setup as in the fifth column, but ignoring all theoretical uncertainties. The nuisance parameters
that are used to parameterise theoretical uncertainties are given in Table 1.
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All observables calculated at 2-loop level

‣MW : full EW one- and two-loop calculation 
of fermionic and bosonic contributions
[M Awramik et al., PRD 69, 053006 (2004), PRL 89, 241801 (2002)]

+ 4-loop QCD correction [Chetyrkin et al., PRL 97, 102003 (2006)]

‣ sin2θleff : same order as MW, calculations for leptons and all quark flavours
[M Awramik et al, PRL 93, 201805 (2004), JHEP 11, 048 (2006), Nucl. Phys. B813, 174 (2009)]

‣ partial widths Γf : fermionic corrections in two-loop for 
all flavours (includes predictions for σ0had) [A. Freitas, JHEP04, 070 (2014)]

‣Radiator functions: QCD corrections at N3LO 
[Baikov et al., PRL 108, 222003 (2012)]

‣ ΓW : only one-loop EW corrections available, negligible impact on fit 
[Cho et al, JHEP 1111, 068 (2011)]

‣ all calculations: one- and two-loop QCD corrections and leading terms 
of higher order corrections
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Calculations
A. Freitas et al. / Physics Letters B 495 (2000) 338–346 341

Fig. 2. Two-loop vertex diagrams containing a triangle subgraph,
which require a careful treatment of γ5 in D dimensions.

a finite contribution, so that it can be evaluated in
four dimensions without further complications. 1 The
fermion line appearing in the second loop also yields
an ε-tensor contribution, which results, after contrac-
tion with the ε-tensor from the triangle subgraph, in a
non-vanishing contribution to the result for #r .
As mentioned above, we perform the renormaliza-

tion within the on-shell scheme. It involves a one-loop
subrenormalization of the Faddeev–Popov ghost sec-
tor of the theory, which is associated with the gauge-
fixing part. The gauge-fixing part is kept invariant un-
der renormalization. For technical convenience, we
manage this by a renormalization of the gauge pa-
rameters in such a way that it precisely cancels the
renormalization of the parameters and fields in the
gauge-fixing Lagrangian. 2 To this end we have al-
lowed two different bare gauge parameters for both W
and Z, ξW,Z

1 and ξ
W,Z
2 , and also mixing gauge parame-

ters, ξγZ and ξZγ . The renormalized parameters com-
ply with the Rξ gauge, with one free gauge parameter
for each gauge boson. With this prescription no coun-

1 For recent discussions of practical ways of treating γ5 in
higher-order calculations, see also Refs. [28,29].
2 An alternative way of achieving that the gauge-fixing sector

does not give rise to counterterm contributions would have been to
add the gauge-fixing part to the Lagrangian only after renormaliza-
tion, in which case the renormalized gauge transformations would
have to be used.

terterm contributions arise from the gauge-fixing sec-
tor. Starting at the two-loop level, counterterm contri-
butions from the ghost sector have to be taken into ac-
count in the calculation of physical amplitudes. They
follow from the variation of the gauge-fixing terms Fa

under infinitesimal gauge transformations. We have
derived all the counterterms arising from the ghost
sector (extending the results of Ref. [30] to a gen-
eral Rξ gauge) and implemented them into the pro-
gram FeynArts. In this way we could verify the finite-
ness of individual (gauge-parameter-dependent) build-
ing blocks (e.g., the W- and the Z-boson self-energy)
as a further check of the calculation.
Concerning the mass renormalization of unstable

particles, from two-loop order on it makes a difference
whether the mass is defined according to the real part
of the complex pole of the S matrix,

(4)M2 = !M2 − i !M !Γ ,

or according to the pole of the real part of the
propagator. In Eq. (4) M denotes the complex pole
of the S matrix and !M , !Γ the corresponding mass and
width of the unstable particle. We use the symbol M̃
for the real pole.
In the context of the present calculation, these

considerations are relevant to the renormalization of
the gauge-boson masses, MW and MZ. The two-loop
mass counterterms according to the definition of the
mass as the real part of the complex pole are given by

δ !M2
W,(2) =Re

{
ΣW
T,(2)

(
M2
W

)}
− δM2

W,(1) δZ
W
(1)

(5)+ Im
{
ΣW′
T,(1)

(
M2
W

)}
Im

{
ΣW
T,(1)

(
M2
W

)}
,

δ !M2
Z,(2) =Re{ΣZZ

T,(2)
(
M2
Z
)} − δM2

Z,(1) δZ
ZZ
(1)

+ M2
Z
4

(
δZ

γZ
(1)

)2 +
(
Im

{
Σ

γZ
T,(1)

(
M2
Z
)})2

M2
Z

(6)+ Im
{
ΣZZ′
T,(1)

(
M2
Z
)}
Im

{
ΣZZ
T,(1)

(
M2
Z
)}

,

where ΣT,(1), ΣT,(2) denote the transverse parts of
the one-loop and two-loop self-energies (the terms
from subloop renormalization are understood to be
contained in the two-loop self-energies), and Σ ′

T,(1)
means the derivative of the one-loop self-energy with
respect to the external momentum squared. Field
renormalization constants are indicated as δZV . The
relations to the mass counterterms according to the
real-pole definition, δM̃2

W,(2) and δM̃2
Z,(2), are given

loop momenta. When both momenta are ‘‘soft’’ (! MW),
as in Fig. 1(b), the propagators of the W and Z bosons are
expanded leading to a correction of order !=M4

W in the
effective theory. For one momentum soft and one ‘‘hard’’
("MW), as in Figs. 1(c) and 1(d), corrections of either
order, !=M2

W or 1=M4
W in the effective theory, are gen-

erated. The contribution to the matching coefficient
comes only from the region where both momenta are
hard, as in Fig. 1(e). In this case, all of the light particle
masses and momenta should be put to zero. By these
arguments it can be shown that !r can be obtained by
simply taking the sum of all the diagrams and putting all
external momenta and light masses to zero. The proce-
dure should generate no spurious infrared divergences,
while the physical divergences connected with the photon
should be contained in the corrections of the effective
theory. As is known, the Fermi theory corrections are
finite; therefore, the !r correction obtained as above
should also be finite.

Previous calculations of !r have been based on a
different method of factorization originally devised in
[11]. This procedure consists of subtracting from the
infrared divergent SM diagrams the respective Fermi
theory diagrams in Pauli-Villars regularization. The dif-
ference is well defined in the limit of zero light masses
and external momenta. It turns out, however, that the
QEDWard identity, which is responsible for the finiteness
of the corrections in the Fermi theory, implies in this case
the vanishing of the sum of the subtracted diagrams. This
proves that both procedures are equivalent.

The evaluation of two loop corrections to a four-
fermion process requires the full second order renormali-
zation of the SM Lagrangian in all but the Higgs sector,
where first order suffices. The comparison with experi-
ment imposes the use of on-shell parameters for the final
result. Throughout this work the on-shell scheme was

used, with a procedure similar to the one described in
[5]. The only substantial difference concerns the treat-
ment of tadpoles.

It is known that gauge invariance of mass counterterms
requires inclusion of tadpoles [12,13] (at the two loop
level this has been explicitly shown in [14]). In this case,
however, one cannot use one-particle-irreducible (1PI)
Green functions. In order to have gauge invariant counter-
terms and 1PI Green functions only, a special procedure
was designed. An additional renormalization constant for
the bare vacuum expectation value v0, denoted Zv, has
been introduced and explicitly split from the bare masses

v0 ! v0Z
1=2
v ; (4)

M0
W;Z ! M0

W;ZZ
1=2
v : (5)

The term linear in the Higgs field H in the Lagrangian

T0H0 # M0
Ws

0
W

e0
$M0

H%2Z1=2
v $Zv & 1%H0 (6)

is then used to determine Zv, through the requirement that
tadpoles are canceled. It can be proved [12,15] that the
bare masses are gauge invariant in this case (an equiva-
lent procedure which makes use of the effective potential
has been used in [16]).

The calculation of the two loop bosonic contributions
to muon decay was performed by means of a completely
automated system. The diagram generation stage was
done by the C'' library DiaGen [17]. The tensor reduc-
tion of two loop propagator diagrams was accomplished
with the algorithm described in [18], whereas vacuum
diagrams were treated with integration by parts identities
[19]. For algebraic manipulations, the program FORM [20]
was used. The two loop two-point integrals were numeri-
cally evaluated with single integral representations of
the package S2LSE [21]. The latter was modified for qua-
druple precision, which was needed due to large cancel-
lations (independent terms grow as M8

H, while the result
behaves as M2

H).
The size of the software required several tests. The

following algebraic checks were performed: ultraviolet
and infrared finiteness, by cancellation of poles in dimen-
sional regularization; gauge invariance, by independence
of the three gauge parameters of the general R" gauge for
the SM; Slavnov-Taylor identities for two-point func-
tions, as given in [18], both for on-shell integrals and
by expansion in the external momentum to second order.

Several numerical tests were also done: (i) All of
the master integrals were evaluated independently by
means of deep mass difference and large-mass expan-
sions. (ii) Each of the two-point on-shell diagrams was
calculated separately with the help of small-momentum
and different large-mass expansions. (iii) The result of
[14] for the W and Z mass counterterms was reproduced
to precision dictated by the order of the expansions

FIG. 1. A typical muon decay diagram (a) and the contribu-
tions to its large mass expansion according to the momenta
(b) k1-soft, k2-soft; (c) soft-hard; (d) hard-soft; (e) hard-hard.

VOLUME 89, NUMBER 24 P H Y S I C A L R E V I E W L E T T E R S 9 DECEMBER 2002
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“fermionic” “bosonic”
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‣ estimated using a geometric series (an = a rn), example:

• similar results from scale variations

‣ reasonable estimates for all observables

‣ exception: mt !

• kin definition, relation to mpole unknown

• uncertainties from colour structure, 
hadronisation and mpole → mt(mt) smaller

‣ 10 additional free parameters, Gaussian likelihood

‣ important missing higher order terms:

• O(α2αs), O(ααs2), O(α2bos) (in some cases), O(α3), O(αs5) (rad. functions)
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rections in ZFITTER, uses the MS definition for ∆ρ, which is numerically larger than the

leading m2
t term, so that the resummation effects of ∆ρMS are rather large. Finally, Zfit-

ter versions before 6.40 use an outdated implementation of the QCD corrections. Since

all these contributions are non-negligible at the current level of precision, it is interesting

to study them separately.

In particular, using the results of section 3.1 the effect of the truncated top-mass

expansion is shown in Tab. 3 (b)2. It turns out that the expansion converges quite well

for realistic values of mt and MH. However, the terms beyond the order m2
t induce a

difference of 4.3% in the two-loop corrections with top-bottom loops, corresponding to a

shift of about 0.2 × 10−4 in sin2 θlept
eff , which is roughly a quarter of the total difference

reported in Tab. 3 (a). As a cross-check, also the result for very large values of mt and MH

are shown in Tab. 3 (b), to illustrate that in this case the series converges much faster.

5.2 Error estimate

While the inclusion of the fermionic two-loop corrections is a substantial improvement of

the prediction of sin2 θlept
eff in the Standard Model, uncertainties from missing higher order

contributions can still be sizeable. Here we try to give an estimate of the error induced

by these unknown contributions. The most relevant missing higher order contributions are

corrections of the order O(α2αs) beyond the leading m4
t term, O(α3) beyond the leading

m6
t term and O(αα3

s ). Since the final prediction for sin2 θlept
eff is based on Gµ as input, the

loop effects in the both quantities ∆r (for the computation of MW) and ∆κ (for the Zl+l−

vertex corrections) need to be considered.

When combining the two form factors, it turns out that there are some cancellations

between the known corrections to MW and the Z vertex. It is expected that similar

cancellations occur when adding an additional QCD loop, since QCD corrections enter

with the same relative sign in the corrections to MW and the Z vertex. Since the dominant

missing higher order effects are contributions with an additional QCD loop, it is assumed in

the following that these cancellations are natural and it is justified to study the theoretical

error of both quantities ∆r and ∆κ in conjunction.

A simple method to estimate the higher order uncertainties is based on the assumption

that the perturbation series follows roughly a geometric progression. This presumption

implies relations like

O(α2αs) =
O(α2)

O(α)
O(ααs). (5.4)

From this one obtains the error estimates in the second column of Tab. 4 for the different

higher order contributions, which are given for a range of the Higgs MH mass between 10

GeV and 1000 GeV. To account for possible deviations from the geometric series behavior,

an ad-hoc overall factor
√

2 was included in all error determined via this method.

Alternatively, the error from a higher-order QCD loop can be assessed by varying the

scale of the strong coupling constant αs or the top-quark mass mt in the MS scheme in

2As a by-product of this comparison, we found a typo in Ref. [45], where a term 3

2
m2

t/(M
2
Zs2

W) log c2
W is

missing in the expression for MH ! mt.
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black: direct measurement (data)
orange: full fit 
light-blue: fit excluding input from row

‣ goodness of fit, p-value:
χ2min= 17.8  Prob(χ2min, 14) = 21%
Pseudo experiments: 21 ± 2 (theo)%
• χ2min(Z widths in 1-loop) = 18.0

• χ2min(no theory uncertainties) = 18.2

‣ no individual value exceeds 3σ
‣ largest deviations in b-sector:

• A0,bFB with 2.5σ
→ largest contribution to χ2

‣ small pulls for MH, MZ 
• input accuracies exceed fit requirements
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2 Update of the global electroweak fit 8

fit results (fourth column of Tab. 2) with the direct measurements (first column of Tab. 2) in units
of the measurement uncertainty. Also shown is the impact of the two-loop result for the Z partial
widths and the O(↵t↵

3
s) correction to MW , compared to the calculations previously used5 [8]. The

right-hand panel of Fig. 1 displays the comparison of both the global fit result and the direct
measurements with the indirect determination (fifth column of Tab. 2) for each observable in units
of the total uncertainty, defined as the uncertainty of the direct measurement and the indirect
determination added in quadrature. Note that in the case of ↵s(M2

Z) the direct measurement
displayed is the world average value [45], which is otherwise not used in the fit.

The availability of the two-loop corrections to the Z partial widths and �0
had allows the determi-

nation of ↵s(M2
Z) to full NNLO and partial NNNLO level. We find

↵s(M
2
Z) = 0.1196± 0.0028 exp ± 0.0006�

theo

RV,A
± 0.0006�

theo

�i
± 0.0002�

theo

�0

had

= 0.1196± 0.0030 tot , (1)

where the theoretical uncertainties due to missing higher order contributions are significantly larger
than previously estimated [8]. This is largely due to the variation of the full O(↵4

s) terms in the
radiator functions, and to the uncertainties on the Z partial widths and �0

had, not assigned before.

The fit indirectly determines the W mass to be

MW = 80.3584± 0.0046mt ± 0.0030�
theo

mt ± 0.0026MZ
± 0.0018�↵

had

± 0.0020↵S ± 0.0001MH
± 0.0040�

theo

MW
GeV ,

= 80.358± 0.008tot GeV . (2)

providing a result which exceeds the precision of the direct measurement. The di↵erent uncertainty
contributions originate from the uncertainties on the input values of the fit, as quoted in the second
column in Table 2. Simple error-propagation is applied to evaluate their impact on the prediction
of MW . At present, the largest uncertainties are due to mt, both experimental and theoretical,
followed by the theory and MZ uncertainties.

Likewise, the indirect determination of the e↵ective leptonic weak mixing angle, sin2✓`e↵ , gives

sin2✓`e↵ = 0.231488± 0.000024mt ± 0.000016�
theo

mt ± 0.000015MZ
± 0.000035�↵

had

± 0.000010↵S ± 0.000001MH
± 0.000047

�
theo

sin2✓f
e↵

,

= 0.23149± 0.00007tot , (3)

where the largest uncertainty is theoretical followed by the uncertainties on �↵
(5)
had(M

2
Z) and mt.

An important consistency test of the SM is the simultaneous indirect determination of mt and
MW . A scan of the confidence level (CL) profile of MW versus mt is shown in Fig. 2 (top) for
the scenarios where the direct MH measurement is included in the fit (blue) or not (grey). Both
contours agree with the direct measurements (green bands and ellipse for two degrees of freedom).
The bottom panel of Fig. 2 displays the corresponding CL profile for the observable pair sin2✓`e↵ and
MW . The coloured ellipses indicate: green for the direct measurements; grey for the electroweak

5With the exception of R0

b , which was previously taken from [26] and was later corrected. For this comparison
the one-loop result [33] is used.

more precise than direct measurement (15 MeV)

Δχ2 profile vs MW

‣ also shown: SM fit with 
minimal input:
MZ, GF, Δαhad(5)(MZ), αs(MZ), 
MH, and fermion masses
• good consistency
‣MH measurement allows for 

precise constraint on MW

• agreement at 1.4σ
‣ fit result for indirect determination of MW (full fit w/o MW):
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providing a result which exceeds the precision of the direct measurement. The di↵erent uncertainty
contributions originate from the uncertainties on the input values of the fit, as quoted in the second
column in Table 2. Simple error-propagation is applied to evaluate their impact on the prediction
of MW . At present, the largest uncertainties are due to mt, both experimental and theoretical,
followed by the theory and MZ uncertainties.

Likewise, the indirect determination of the e↵ective leptonic weak mixing angle, sin2✓`e↵ , gives

sin2✓`e↵ = 0.231488± 0.000024mt ± 0.000016�
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had
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where the largest uncertainty is theoretical followed by the uncertainties on �↵
(5)
had(M

2
Z) and mt.

An important consistency test of the SM is the simultaneous indirect determination of mt and
MW . A scan of the confidence level (CL) profile of MW versus mt is shown in Fig. 2 (top) for
the scenarios where the direct MH measurement is included in the fit (blue) or not (grey). Both
contours agree with the direct measurements (green bands and ellipse for two degrees of freedom).
The bottom panel of Fig. 2 displays the corresponding CL profile for the observable pair sin2✓`e↵ and
MW . The coloured ellipses indicate: green for the direct measurements; grey for the electroweak

5With the exception of R0

b , which was previously taken from [26] and was later corrected. For this comparison
the one-loop result [33] is used.

more precise than direct measurement (15 MeV)
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Rfit

( δmt (1 GeV): ±9 MeV, Rfit: ±13 MeV )

Δχ2 profile vs MW

‣ also shown: SM fit with 
minimal input:
MZ, GF, Δαhad(5)(MZ), αs(MZ), 
MH, and fermion masses
• good consistency
‣MH measurement allows for 

precise constraint on MW

• agreement at 1.4σ
‣ fit result for indirect determination of MW (full fit w/o MW):
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Δχ2 profile vs mt

‣ determination of mt from 
Z-pole data (fully obtained 
from rad. 
corrections ~mt2)
‣ alternative to direct 

measurements
‣MH allows for significantly 

more precise determination 
of mt

‣ similar precision as determination from σtt , good agreement
‣ dominated by experimental precision

mt = 177.0± 2.3MW ± 2.3
sin

2✓f
eff

± 0.6↵s ± 0.5
�↵had ± 0.4MZ GeV

= 177.0± 2.4
exp

± 0.5
theo

GeV

mt = 177.0± 2.3MW ± 2.3
sin

2✓f
eff

± 0.6↵s ± 0.5
�↵had ± 0.4MZ GeV

= 177.0± 2.4
exp

± 0.5
theo

GeV

mt = 177.0± 2.3MW ± 2.3
sin

2✓f
eff

± 0.6↵s ± 0.5
�↵had ± 0.4MZ GeV

= 177.0± 2.4
exp

± 0.5
theo

GeV

,



sensitive probes of new physics
‣ significant reduction of parameter space due to knowledge of MH

‣ predictions are more precise than the direct measurements
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‣ study of potential deviations of Higgs couplings from SM
‣ leading corrections only, parametrize deviations with effective couplings 
‣ LHC and Tevatron data included using HiggsSignals [P. Bechtle et al., JHEP11, 039 (2014)]

Roman Kogler The global electroweak fit 

Tree Level Higgs Couplings
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‣ no BSM contributions on tree-level to fermion or vector-boson coupling
‣ stronger constraints on κW than on κZ 

‣ custodial symmetry holds, κW = κZ = κV
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4 Status and prospects for the Higgs couplings determination

To test the validity of the SM and look for signs of new physics, precision measurements of the
properties of the Higgs boson are of critical importance. Key are the couplings to the SM fermions
and bosons, which are predicted to depend linearly on the fermion mass and quadratically on the
boson mass.

Modified Higgs couplings have been probed by ATLAS and CMS in various benchmark models [57–
64]. These employ an e↵ective theory approach, where higher-order modifiers to a phenomenolog-
ical Lagrangian are matched at tree-level to the SM Higgs boson couplings. In one popular model
all boson and all fermion couplings are modified in the same way, scaled by the constants V and
F , respectively, where V = F = 1 for the SM. This benchmark model uses the explicit assump-
tion that no other new physics is present, e.g., there are no additional loops in the production
or decay of the Higgs boson, and no invisible Higgs decays and undetectable contributions to its
decay width. For details see Ref. [65].

The combined analysis of electroweak precision data and Higgs signal-strength measurements has
been studied by several groups [5, 9, 66–71]. The main e↵ect of this model on the electroweak preci-
sion observables is from the modified Higgs coupling to gauge bosons, and manifests itself through
loop diagrams involving the longitudinal degrees of freedom of these bosons. The corrections to
the Z and W boson propagators can be expressed in terms of the S, T parameters [66],

S =
1

12⇡
(1� 2V ) ln

⇤2

M2
H

, T = � 3

16⇡ cos2✓`e↵
(1� 2V ) ln

⇤2

M2
H

, ⇤ =
�q

|1� 2V |
, (5)

and U = 0. The cut-o↵ scale ⇤ represents the mass scale of the new states that unitarise lon-
gitudinal gauge-boson scattering, as required in this model. Note that the less V deviates from
one, the higher the scale of new physics. Most BSM models with additional Higgs bosons giving
positive corrections to the W mass predict values of V smaller than 1. Here the nominator � is
varied between 1 and 10 TeV, and is nominally fixed to 3 TeV (4⇡v).

Figure 8 (top) shows the predictions for S and T , profiled over V and �, together with the allowed
regions for S and T from the current electroweak fit. The length of the predicted line covers a
variation in V between [0, 2], the width covers the variation in �.

The bottom panel of Fig. 8 shows V and F as obtained from a private combination of ATLAS
and CMS results using all publicly available information on the measured Higgs signal strength
modifiers µi. Also shown is the combined constraint on V (and F ) from the LHC experiments
and the electroweak fit.

The published Higgs coupling measurements of µggF+ttH versus µVBF+VH from ATLAS and CMS
used in this combination are summarised in Table 5. The measurements from the ATLAS Higgs to
di-boson channels are published likelihood scans [57]. The CMS results in Table 5 are approximate
values derived from public likelihood iso-contour lines. Correlations of the theory and detector
related uncertainties between the various µi are neglected in the combination, as these are not
provided by the experiments. We find that the individual experimental combinations of ATLAS and
CMS for V (and F ) are approximately reproduced by this simplified procedure. The measured
values from this combination are V = 1.026+0.042

�0.044 and F = 0.88+0.10
�0.09.
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variation in V between [0, 2], the width covers the variation in �.

The bottom panel of Fig. 8 shows V and F as obtained from a private combination of ATLAS
and CMS results using all publicly available information on the measured Higgs signal strength
modifiers µi. Also shown is the combined constraint on V (and F ) from the LHC experiments
and the electroweak fit.

The published Higgs coupling measurements of µggF+ttH versus µVBF+VH from ATLAS and CMS
used in this combination are summarised in Table 5. The measurements from the ATLAS Higgs to
di-boson channels are published likelihood scans [57]. The CMS results in Table 5 are approximate
values derived from public likelihood iso-contour lines. Correlations of the theory and detector
related uncertainties between the various µi are neglected in the combination, as these are not
provided by the experiments. We find that the individual experimental combinations of ATLAS and
CMS for V (and F ) are approximately reproduced by this simplified procedure. The measured
values from this combination are V = 1.026+0.042

�0.044 and F = 0.88+0.10
�0.09.
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M2
H
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|1� 2V |
, (5)
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one, the higher the scale of new physics. Most BSM models with additional Higgs bosons giving
positive corrections to the W mass predict values of V smaller than 1. Here the nominator � is
varied between 1 and 10 TeV, and is nominally fixed to 3 TeV (4⇡v).

Figure 8 (top) shows the predictions for S and T , profiled over V and �, together with the allowed
regions for S and T from the current electroweak fit. The length of the predicted line covers a
variation in V between [0, 2], the width covers the variation in �.

The bottom panel of Fig. 8 shows V and F as obtained from a private combination of ATLAS
and CMS results using all publicly available information on the measured Higgs signal strength
modifiers µi. Also shown is the combined constraint on V (and F ) from the LHC experiments
and the electroweak fit.

The published Higgs coupling measurements of µggF+ttH versus µVBF+VH from ATLAS and CMS
used in this combination are summarised in Table 5. The measurements from the ATLAS Higgs to
di-boson channels are published likelihood scans [57]. The CMS results in Table 5 are approximate
values derived from public likelihood iso-contour lines. Correlations of the theory and detector
related uncertainties between the various µi are neglected in the combination, as these are not
provided by the experiments. We find that the individual experimental combinations of ATLAS and
CMS for V (and F ) are approximately reproduced by this simplified procedure. The measured
values from this combination are V = 1.026+0.042

�0.044 and F = 0.88+0.10
�0.09.

‣ consider specific model in “κ parametrisation”:

• scaling of Higgs-vector boson (κV) and Higgs-fermion couplings (κF), 
with no invisible/undetectable widths

‣main effect on EWPD due to modified Higgs coupling to gauge bosons (κV) 
[Espinosa et al. arXiv:1202.3697, Falkowski et al. arXiv:1303.1812], etc 

‣ correlation between κV and MW

• slightly smaller values of MW 
preferred
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Higgs Coupling Results

Higgs coupling  
measurements:
‣ κV = 0.99 ± 0.08
‣ κF = 1.01 ± 0.17

‣Combined result: 
‣ κV = 1.03 ± 0.02  

(λ = 3 TeV)

‣ implies NP-scale of 
Λ ≥ 13 TeV

16

‣ some dependency for κV in central value [1.02-1.04] and error [0.02-0.03] 
on cut-off scale λ [1-10 TeV]
• EW fit sofar more precise result for κV than current LHC experiments
• EW fit has positive deviation of κV from 1.0

- many BSM models: κV < 1
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‣ extend the scalar sector by another doublet
‣ studies of Z2 Type-1 and Type-2 2HDMs

• difference in the coupling to down-type quarks
• Type-2 related to MSSM, but less constrained
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Two Higgs Doublet Models
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5

Type I and Type II Type I Type II

Higgs CV CU CD CU CD

h sin(� � ↵) cos↵/ sin� cos↵/ sin� cos↵/ sin� �sin↵/ cos�

H cos(� � ↵) sin↵/ sin� sin↵/ sin� sin↵/ sin� cos↵/ cos�

A 0 cot� � cot� cot� tan�

TABLE I: Tree-level vector boson couplings CV (V = W,Z) and fermionic couplings CF (F = U,D)

normalized to their SM values for the Type I and Type II 2HDMs.

A. Scan ranges and procedures

As in [29], we employ a modified version of the code 2HDMC [33, 34] for our numerical

calculations. All relevant contributions to loop-induced processes are taken into account,

in particular those with heavy quarks (t and b), W± and H±. A number of di↵erent input

sets can be used in the 2HDMC context. We have chosen to use the “physical basis” in which

the inputs are the physical Higgs masses (mh,mH ,mA,mH±), the vacuum expectation value

ratio (tan �), and the CP -even Higgs mixing angle, ↵, supplemented by m2
12. The additional

parameters �6 and �7 are assumed to be zero as a result of a Z2 symmetry being imposed

on the dimension-4 operators under which H1 ! H1 and H2 ! �H2. m2
12 6= 0 is allowed as

a “soft” breaking of the Z2 symmetry. With the above inputs, �1,2,3,4,5 as well as m2
11 and

m2
22 are determined (the latter two via the minimization conditions for a minimum of the

vacuum) [7]. We scan over the following ranges:3

↵ 2 [�⇡/2,+⇡/2] , tan � 2 [0.5, 60] , m2
12 2 [�(2 TeV)2, (2 TeV)2] ,

mA 2 [5 GeV, 2 TeV] , mH± 2 [m⇤, 2 TeV] , (2)

where m⇤ is the lowest value of mH± allowed by LEP direct production limits and B physics

constraints. The LEP limits on the H± are satisfied by requiring mH± � 90 GeV. The lower

bounds from B physics are shown as a function of tan� in Fig. 15 of [8] in the case of the

Type II model (roughly m⇤ ⇠ 300 GeV in this case) and in Fig. 18 of [8] in the case of the

3 The upper and lower bounds on tan� are chosen to ensure that the bottom and top Yukawa couplings,

respectively, lie within the perturbative region. Unlike the Z2 symmetric 2HDM which constrains tan� .
7 [22], high tan� values are allowed when the Z2 symmetry is softly broken. A safe upper limit, as adopted

here, is tan�  60.

 [GeV]0HM
200 300 400 500 600 700 800 900

 [G
eV

]
0

A
M

200

300

400

500

600

700

800

900

Two-Higgs Doublet Model

68% and 95% CL fit contours (allowed)

 = 250 GeV±HM

 = 500 GeV±HM

 = 750 GeV±HM

preliminary

G fitter DM
2H

M
ar '15

 [GeV]0HM
200 300 400 500 600 700 800 900

 [G
eV

]
0

A
M

200

300

400

500

600

700

800

900

Two-Higgs Doublet Model

68% and 95% CL fit contours (allowed)

 = 250 GeV±HM

 = 500 GeV±HM

 = 750 GeV±HM

preliminary

G fitter DM
2H

M
ar '15

Preliminary ‣ constraints derived 
from EWPD using 
S,T,U formalism

‣ lightest scalar 
Mh = 125.1 GeV

‣weak constraints 
on masses, since 
tanβ and cos(β-α) 
are unconstrained

[talk by 
 Alejandro Celis]
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‣ coupling measurements place important constraints on 2HDMs
‣ predictions of BRs using 2HDMC [D. Eriksson et al., CPC 181, 189 (2010)]

‣ 7 additional, unconstraint parameters (4 masses, 2 angles, soft breaking scale): 
importance sampling with MultiNest [F. Feroz et al., arXiv:1306.2144]

‣ additional constraints from flavour data
• B→Xs γ: tanβ > 1            • Bs→µµ : constraints depending on MH and MH±
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2HDM and H Coupling Measurements
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‣ for given MH± tight constraints from H coupling measurements and EWPD
‣ expect improvement from direct searches at the LHC
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Global Fit to 2HDM of Type-2
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3 Prospects of the electroweak fit with the LHC and ILC/GigaZ 13

Experimental input [±1�
exp

] Indirect determination [±1�
exp

, ±1�
theo

]

Parameter Present LHC ILC/GigaZ Present LHC ILC/GigaZ

MH [GeV] 0.2 < 0.1 < 0.1 +31
�26 ,

+10
�8

+20
�18 ,

+3.9
�3.2

+6.8
�6.5 ,

+2.5
�2.4

MW [MeV] 15 8 5 6.0, 5.0 5.2, 1.8 1.9, 1.3

MZ [MeV] 2.1 2.1 2.1 11, 4 7.0, 1.4 2.5, 1.0

mt [GeV] 0.8 0.6 0.1 2.4, 0.6 1.5, 0.2 0.7, 0.2

sin2✓`e↵ [10�5] 16 16 1.3 4.5, 4.9 2.8, 1.1 2.0, 1.0

�↵5
had(M

2
Z) [10�5] 10 4.7 4.7 42, 13 36, 6 5.6, 3.0

R0
l [10�3] 25 25 4 – – –

↵S(M2
Z) [10�4] – – – 40, 10 39, 7 6.4, 6.9

S|U=0 – – – 0.094, 0.027 0.086, 0.006 0.017, 0.006

T |U=0 – – – 0.083, 0.023 0.064, 0.005 0.022, 0.005

V (� = 3TeV) 0.05 0.03 0.01 0.02 0.02 0.01

Table 3: Current and extrapolated future uncertainties in the input observables (left), and the precision
obtained for the fit prediction (right). Where two uncertainties are given, the first is experimental and the
second theoretical. The value of ↵S(M2

Z) is not used directly as input in the fit. The uncertainty in the
direct MH measurements is not relevant for the fit and therefore not quoted. For all indirect determinations
shown (including the present MH determination) the assumed central values of the input measurements
have been adjusted to obtain a common fit value of MH = 125 GeV. The simplified fit setup used to derive
the numbers in this table leads in some cases to reduced constraints on observables as can be seen by
comparing the uncertainties of the present scenarios (fifth column) with the last column of Table 2. See
text for more details.

For both future scenarios we assume that the uncertainty in �↵
(5)
had(M

2
Z) will reduce from currently

10 · 10�5 down to 4.7 · 10�5. The improvement is expected due to updated e+e� ! hadrons cross
section measurements below the charm threshold from the completion of ongoing BABAR and
VEPP-2000 analyses, improved charmonium resonance data from BES-III, and a better knowledge
of ↵S from reliable Lattice QCD predictions [56].

The present and projected experimental uncertainties for the observables used in the simplified
electroweak fit are summarised in the left columns of Table 3.

To match the experimental precision significant theoretical progress is required. Leaving aside the
ambiguity in mt discussed above, the presently most important theoretical uncertainties a↵ecting
the fit are those related to the predictions of MW and sin2✓fe↵ . For the future scenarios, we assume

that the present uncertainties of �theoMW = 4 MeV and �theo sin2✓
f
e↵ = 4.7 · 10�5 reduce to 1 MeV

and 10�5, respectively. This reduction will require ambitious three-loop electroweak calculations.
The leading theoretical uncertainties on the partial Z decay widths, �0

had, and the radiator functions
play a smaller role in the present fit. For the future scenarios the uncertainty estimates given in
Table 1 are assumed to be reduced by a factor of four, similar to the uncertainties on MW and
sin2✓fe↵ .
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Table 3: Current and extrapolated future uncertainties in the input observables (left), and the precision
obtained for the fit prediction (right). Where two uncertainties are given, the first is experimental and the
second theoretical. The value of ↵S(M2

Z) is not used directly as input in the fit. The uncertainty in the
direct MH measurements is not relevant for the fit and therefore not quoted. For all indirect determinations
shown (including the present MH determination) the assumed central values of the input measurements
have been adjusted to obtain a common fit value of MH = 125 GeV. The simplified fit setup used to derive
the numbers in this table leads in some cases to reduced constraints on observables as can be seen by
comparing the uncertainties of the present scenarios (fifth column) with the last column of Table 2. See
text for more details.

For both future scenarios we assume that the uncertainty in �↵
(5)
had(M

2
Z) will reduce from currently

10 · 10�5 down to 4.7 · 10�5. The improvement is expected due to updated e+e� ! hadrons cross
section measurements below the charm threshold from the completion of ongoing BABAR and
VEPP-2000 analyses, improved charmonium resonance data from BES-III, and a better knowledge
of ↵S from reliable Lattice QCD predictions [56].

The present and projected experimental uncertainties for the observables used in the simplified
electroweak fit are summarised in the left columns of Table 3.

To match the experimental precision significant theoretical progress is required. Leaving aside the
ambiguity in mt discussed above, the presently most important theoretical uncertainties a↵ecting
the fit are those related to the predictions of MW and sin2✓fe↵ . For the future scenarios, we assume

that the present uncertainties of �theoMW = 4 MeV and �theo sin2✓
f
e↵ = 4.7 · 10�5 reduce to 1 MeV

and 10�5, respectively. This reduction will require ambitious three-loop electroweak calculations.
The leading theoretical uncertainties on the partial Z decay widths, �0

had, and the radiator functions
play a smaller role in the present fit. For the future scenarios the uncertainty estimates given in
Table 1 are assumed to be reduced by a factor of four, similar to the uncertainties on MW and
sin2✓fe↵ .

‣ theoretical uncertainties reduced by a factor of 4 (esp. MW and sin2θleff)
• implies three-loop EW calculations!
• exception: δtheo mt (LHC) = 0.25 GeV (factor 2)
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δA0,fLR : 10−3 →10−4
tt threshold scan

low energy data, better αs

high statistics on Z-pole

WW threshold

3 Prospects of the electroweak fit with the LHC and ILC/GigaZ 13
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Table 3: Current and extrapolated future uncertainties in the input observables (left), and the precision
obtained for the fit prediction (right). Where two uncertainties are given, the first is experimental and the
second theoretical. The value of ↵S(M2

Z) is not used directly as input in the fit. The uncertainty in the
direct MH measurements is not relevant for the fit and therefore not quoted. For all indirect determinations
shown (including the present MH determination) the assumed central values of the input measurements
have been adjusted to obtain a common fit value of MH = 125 GeV. The simplified fit setup used to derive
the numbers in this table leads in some cases to reduced constraints on observables as can be seen by
comparing the uncertainties of the present scenarios (fifth column) with the last column of Table 2. See
text for more details.

For both future scenarios we assume that the uncertainty in �↵
(5)
had(M

2
Z) will reduce from currently

10 · 10�5 down to 4.7 · 10�5. The improvement is expected due to updated e+e� ! hadrons cross
section measurements below the charm threshold from the completion of ongoing BABAR and
VEPP-2000 analyses, improved charmonium resonance data from BES-III, and a better knowledge
of ↵S from reliable Lattice QCD predictions [56].

The present and projected experimental uncertainties for the observables used in the simplified
electroweak fit are summarised in the left columns of Table 3.

To match the experimental precision significant theoretical progress is required. Leaving aside the
ambiguity in mt discussed above, the presently most important theoretical uncertainties a↵ecting
the fit are those related to the predictions of MW and sin2✓fe↵ . For the future scenarios, we assume

that the present uncertainties of �theoMW = 4 MeV and �theo sin2✓
f
e↵ = 4.7 · 10�5 reduce to 1 MeV

and 10�5, respectively. This reduction will require ambitious three-loop electroweak calculations.
The leading theoretical uncertainties on the partial Z decay widths, �0

had, and the radiator functions
play a smaller role in the present fit. For the future scenarios the uncertainty estimates given in
Table 1 are assumed to be reduced by a factor of four, similar to the uncertainties on MW and
sin2✓fe↵ .

direct measurement of BRs
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‣ competitive results between EW fit and Higgs coupling measurements!
• precision of about 1%
‣ ILC/GigaZ offers fantastic possibilities to test the SM and constrain NP 
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MW : Impact of Uncertainties
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                                                     δMZ δΔαhadδmtop δsin2(θleff) δαs

Today

δmeas = 15 MeV

δfit    =   8 MeV

LHC-300

δmeas =   8 MeV

δfit    =   6 MeV

ILC/GigaZ

δmeas =   5 MeV

δfit    =   2 MeV

Impact of individual uncertainties on δMW in fit (numbers in MeV)

‣ ILC/GigaZ: impact δMZ of will become important again!
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Summary
Huge success of the SM

‣ EW fit is a powerful tool to study the scalar sector of the SM

• impact on SM observables

• modifications of H couplings

• BSM extensions 
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We cannot know 
MW and sin2θleff 

precise enough

www.cern.ch/gfitter
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(theoretically and experimentally)

http://www.cern.ch/Gfitter
http://www.cern.ch/Gfitter
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Thank You For Your Attention!
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Accuracy of mt ?
‣ kinematic top mass definition

• factorization: hard function, universal 
jet-function, non-pert. 
soft function [Moch et al, arXiv:1405.4781]

• MC mass is (may be) related to the 
low scale short-distance mass
in the jet function

• but: no quantitative statement available
• relating mtkin to mtpole : Δmt ≥ ΛQCD

‣ colour structure and hadronisation
• partly included in experimental uncertainties
• study on kinematic dependencies of mt

‣ calculating mt(mt) from mtpole

• QCD (three-loop): Δmt ≈ 0.02 GeV
• EW (two-loop): Δmt ≈ 0.1 GeV
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Interpreteation of mt measurements
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Definition of mtop

If Γtop were < 1 GeV, top would 
hadronize before decaying. Same as b-
quark

T
p1
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t

q

m2
T =

0

@
X

i=1,...,n

pi

1

A
2

But Γtop is > 1 GeV, top decays before 
hadronizing. Extra antiquarks must be 
added to the top-quark decay final state 
in order to produce the physical state 
whose mass will be measured

As a result, Mexp is not equal to mpoletop, 
and will vary in each event, depending 
on the way the event has evolved. 

The top mass extracted in hadron 
collisions is not well defined below a 
precision of O(Γtop)~ 1 GeV
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Goal: 
- correctly quantify the systematic uncertainty
- identify observables that allow to validate the 
theoretical modeling of hadronization in top 
decays
- identify observables less sensitive to these 
effects

q

q
_

mt = Flattice/potential models (mT, αQCD)

[M. Mangano]

[CMS-TOP-12-029]

[Kniehl et al., arXiv:1401.1844]
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SM Fit Results

‣ no individual value exceeds 3σ
‣ largest deviations in b-sector:

• A0,bFB with 2.5σ
→ largest contribution to χ2

‣ Small pulls for MH, MZ, mc, mb 
• input accuracies exceed fit requirements

‣Goodness of fit, p-value:
χ2min= 17.8  Prob(χ2min, 14) = 21%
Pseudo experiments: 21 ± 2 (theo)%

‣ Small changes from switching between 
1 and 2-loop calc. for partial Z widths 
and small MW correction:
• χ2min(Z widths in 1-loop) = 18.0
• χ2min(no O(αmtαs3) MW correction) = 17.4
• χ2min(no theory uncertainties) = 18.2
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Higgs results

29

Δχ2 profile vs MH

‣ grey band: fit without MH measurement :
• MH = 93+25−21 GeV
• consistent with measurement at 1.3σ
‣ blue line: full SM fit

impact of most sensitive observables
‣ determination of MH, 

removing all sensitive observables 
except the given one
‣ known tension (3σ) 

between Al(SLD), A0,bFB ,   
and MW clearly visible
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Δχ2 profile vs sin2θleff

‣ all measurements directly 
sensitive to sin2θleff 

removed from fit 
(asymmetries, partial widths)

• good agreement with min input

‣MH measurement allows for 
precise constraint

‣ fit result for indirect determination of sin2θleff :

2 Update of the global electroweak fit 8

fit results (fourth column of Tab. 2) with the direct measurements (first column of Tab. 2) in units
of the measurement uncertainty. Also shown is the impact of the two-loop result for the Z partial
widths and the O(↵t↵

3
s) correction to MW , compared to the calculations previously used5 [8]. The

right-hand panel of Fig. 1 displays the comparison of both the global fit result and the direct
measurements with the indirect determination (fifth column of Tab. 2) for each observable in units
of the total uncertainty, defined as the uncertainty of the direct measurement and the indirect
determination added in quadrature. Note that in the case of ↵s(M2

Z) the direct measurement
displayed is the world average value [45], which is otherwise not used in the fit.

The availability of the two-loop corrections to the Z partial widths and �0
had allows the determi-

nation of ↵s(M2
Z) to full NNLO and partial NNNLO level. We find

↵s(M
2
Z) = 0.1196± 0.0028 exp ± 0.0006�

theo

RV,A
± 0.0006�

theo

�i
± 0.0002�

theo

�0

had

= 0.1196± 0.0030 tot , (1)

where the theoretical uncertainties due to missing higher order contributions are significantly larger
than previously estimated [8]. This is largely due to the variation of the full O(↵4

s) terms in the
radiator functions, and to the uncertainties on the Z partial widths and �0

had, not assigned before.

The fit indirectly determines the W mass to be

MW = 80.3584± 0.0046mt ± 0.0030�
theo

mt ± 0.0026MZ
± 0.0018�↵

had

± 0.0020↵S ± 0.0001MH
± 0.0040�

theo

MW
GeV ,

= 80.358± 0.008tot GeV . (2)

providing a result which exceeds the precision of the direct measurement. The di↵erent uncertainty
contributions originate from the uncertainties on the input values of the fit, as quoted in the second
column in Table 2. Simple error-propagation is applied to evaluate their impact on the prediction
of MW . At present, the largest uncertainties are due to mt, both experimental and theoretical,
followed by the theory and MZ uncertainties.

Likewise, the indirect determination of the e↵ective leptonic weak mixing angle, sin2✓`e↵ , gives

sin2✓`e↵ = 0.231488± 0.000024mt ± 0.000016�
theo

mt ± 0.000015MZ
± 0.000035�↵

had

± 0.000010↵S ± 0.000001MH
± 0.000047

�
theo

sin2✓f
e↵

,

= 0.23149± 0.00007tot , (3)

where the largest uncertainty is theoretical followed by the uncertainties on �↵
(5)
had(M

2
Z) and mt.

An important consistency test of the SM is the simultaneous indirect determination of mt and
MW . A scan of the confidence level (CL) profile of MW versus mt is shown in Fig. 2 (top) for
the scenarios where the direct MH measurement is included in the fit (blue) or not (grey). Both
contours agree with the direct measurements (green bands and ellipse for two degrees of freedom).
The bottom panel of Fig. 2 displays the corresponding CL profile for the observable pair sin2✓`e↵ and
MW . The coloured ellipses indicate: green for the direct measurements; grey for the electroweak

5With the exception of R0

b , which was previously taken from [26] and was later corrected. For this comparison
the one-loop result [33] is used.

Roman Kogler The global electroweak fit 

The effective weak mixing angle

30

more precise than determination from LEP/SLD (1.6×10-4)
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‣ determination of αs

at full NNLO and partial NNNLO
‣ also shown: minimal input with 

two most sensitive 
measurements: Rl, σ0had

‣MH has no (visible) impact

2 Update of the global electroweak fit 8

fit results (fourth column of Tab. 2) with the direct measurements (first column of Tab. 2) in units
of the measurement uncertainty. Also shown is the impact of the two-loop result for the Z partial
widths and the O(↵t↵

3
s) correction to MW , compared to the calculations previously used5 [8]. The

right-hand panel of Fig. 1 displays the comparison of both the global fit result and the direct
measurements with the indirect determination (fifth column of Tab. 2) for each observable in units
of the total uncertainty, defined as the uncertainty of the direct measurement and the indirect
determination added in quadrature. Note that in the case of ↵s(M2

Z) the direct measurement
displayed is the world average value [45], which is otherwise not used in the fit.

The availability of the two-loop corrections to the Z partial widths and �0
had allows the determi-

nation of ↵s(M2
Z) to full NNLO and partial NNNLO level. We find
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Z) = 0.1196± 0.0028 exp ± 0.0006�
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± 0.0006�
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= 0.1196± 0.0030 tot , (1)

where the theoretical uncertainties due to missing higher order contributions are significantly larger
than previously estimated [8]. This is largely due to the variation of the full O(↵4

s) terms in the
radiator functions, and to the uncertainties on the Z partial widths and �0

had, not assigned before.

The fit indirectly determines the W mass to be

MW = 80.3584± 0.0046mt ± 0.0030�
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mt ± 0.0026MZ
± 0.0018�↵
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± 0.0020↵S ± 0.0001MH
± 0.0040�
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= 80.358± 0.008tot GeV . (2)

providing a result which exceeds the precision of the direct measurement. The di↵erent uncertainty
contributions originate from the uncertainties on the input values of the fit, as quoted in the second
column in Table 2. Simple error-propagation is applied to evaluate their impact on the prediction
of MW . At present, the largest uncertainties are due to mt, both experimental and theoretical,
followed by the theory and MZ uncertainties.

Likewise, the indirect determination of the e↵ective leptonic weak mixing angle, sin2✓`e↵ , gives

sin2✓`e↵ = 0.231488± 0.000024mt ± 0.000016�
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where the largest uncertainty is theoretical followed by the uncertainties on �↵
(5)
had(M
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Z) and mt.

An important consistency test of the SM is the simultaneous indirect determination of mt and
MW . A scan of the confidence level (CL) profile of MW versus mt is shown in Fig. 2 (top) for
the scenarios where the direct MH measurement is included in the fit (blue) or not (grey). Both
contours agree with the direct measurements (green bands and ellipse for two degrees of freedom).
The bottom panel of Fig. 2 displays the corresponding CL profile for the observable pair sin2✓`e↵ and
MW . The coloured ellipses indicate: green for the direct measurements; grey for the electroweak

5With the exception of R0

b , which was previously taken from [26] and was later corrected. For this comparison
the one-loop result [33] is used.
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The strong coupling αs(MZ)

31

q

q q

q
g g

g

q

q

Z/γ Z/γ Z/γ

More accurate estimation of theo. uncertainties
(previously: δtheo = 0.0001 from scale variations)

good agreement with WA, dominated by exp. uncertainty



impact of variation in δtheo mt between 0 and 1.5 GeV
‣ better assessment of uncertainty on mt important for the fit
‣ uncertainty of 0.5 GeV small impact on result
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Theoretical uncertainty on mt
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Constraints on BSM models

‣ if energy scale of NP is high, BSM physics could appear dominantly through 
vacuum polarisation corrections

‣ described by STU parameters
[Peskin and Takeuchi, Phys. Rev. D46, 1 (1991)]

‣ SM: MH = 125 GeV, mt = 173 GeV
this defines (S,T,U) = (0,0,0)

‣ S, T depend logarithmically on MH

‣ Fit result:
S = 0.05 ± 0.11
T = 0.09 ± 0.13
U = 0.01 ± 0.11

‣ no indication for new physics
‣ use this to constrain parameter space in BSM models

33
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S 1 +0.90 -0.59

T 1 -0.83

U 1

S
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

T

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5
=173 GeV)t=125 GeV, mH: Mreffit contours for U=0 (SM

68% and 95% CL for present fit
)

FB
(Qeff

lθ295% CL for asymmetries & sin
95% CL for Z widths

WΓ & W95% CL for M

SM Prediction
 0.24 GeV± = 125.14 HM
 0.91 GeV± = 173.34 tm

G fitter SM

Jul '14

stronger constraints with U = 0:



Observables included in HiggsSignals-1.2.0

H ! WW ! `⌫`⌫ (0/1 jet) [8 TeV]
H ! WW ! `⌫`⌫ (2 jet) [8 TeV]

V H ! VWW [8 TeV]
H ! ZZ ! 4` (VBF/VH like) [8 TeV]

H ! ZZ ! 4` (ggH like) [8 TeV]
H ! �� (conv.cntr. high pTt) [8 TeV]
H ! �� (conv.cntr. low pTt) [8 TeV]
H ! �� (conv.rest high pTt) [8 TeV]
H ! �� (conv.rest low pTt) [8 TeV]

H ! �� (unconv.cntr. high pTt) [8 TeV]
H ! �� (unconv.cntr. low pTt) [8 TeV]
H ! �� (unconv.rest high pTt) [8 TeV]
H ! �� (unconv.rest low pTt) [8 TeV]

H ! �� (conv.trans.) [8 TeV]
H ! �� (higH mass, 2 jet, loose) [8 TeV]
H ! �� (higH mass, 2 jet, tight) [8 TeV]

H ! �� (low mass, 2 jet) [8 TeV]
H ! �� (1`) [8 TeV]

H ! �� (ETmiss) [8 TeV]
H ! �� (conv.cntr. high pTt) [7 TeV]
H ! �� (conv.cntr. low pTt) [7 TeV]
H ! �� (conv.rest high pTt) [7 TeV]
H ! �� (conv.rest low pTt) [7 TeV]

H ! �� (unconv.cntr. high pTt) [7 TeV]
H ! �� (unconv.cntr. low pTt) [7 TeV]
H ! �� (unconv.rest high pTt) [7 TeV]
H ! �� (unconv.rest low pTt) [7 TeV]

H ! �� (conv.trans.) [7 TeV]
H ! �� (2 jet) [7 TeV]

H ! ⌧⌧ (boosted, hadhad) [8 TeV]
H ! ⌧⌧ (boosted, lephad) [8 TeV]
H ! ⌧⌧ (boosted, leplep) [8 TeV]
H ! ⌧⌧ (VBF, hadhad) [8 TeV]
H ! ⌧⌧ (VBF, lephad) [8 TeV]
H ! ⌧⌧ (VBF, leplep) [8 TeV]

V H ! V bb (0`) [8 TeV]
V H ! V bb (1`) [8 TeV]
V H ! V bb (2`) [8 TeV]

ATLAS

 �4.36

6.1!

10.44!

�1 0 1 2 3

H ! WW

H ! ��

H ! ⌧⌧

H ! bb

DØ
4.2!

�1 0 1 2 3

[8 TeV] H ! WW ! 2`2⌫ (0/1 jet)

[8 TeV] H ! WW ! 2`2⌫ (VBF)

[8 TeV] H ! WW! 2`2⌫ (VH)

[8 TeV] V H ! VWW (hadr. V )

[8 TeV] WH !WWW !3`3⌫

[8 TeV] H ! ZZ ! 4` (0/1 jet)

[8 TeV] H ! ZZ ! 4` (2 jet)

[8 TeV] H ! �� (untagged 0)

[8 TeV] H ! �� (untagged 1)

[8 TeV] H ! �� (untagged 2)

[8 TeV] H ! �� (untagged 3)

[8 TeV] H ! �� (2 jet, loose)

[8 TeV] H ! �� (2 jet, tight)

[8 TeV] H ! �� (ETmiss)

[8 TeV] H ! �� (e)

[8 TeV] H ! �� (µ)

[7 TeV] H ! �� (untagged 0)

[7 TeV] H ! �� (untagged 1)

[7 TeV] H ! �� (untagged 2)

[7 TeV] H ! �� (untagged 3)

[7 TeV] H ! �� (2 jet)

[8 TeV] H ! µµ

[8 TeV] H ! ⌧⌧ (0 jet)

[8 TeV] H ! ⌧⌧ (1 jet)

[8 TeV] H ! ⌧⌧ (VBF)

[8 TeV] V H ! ⌧⌧

[8 TeV] V H ! V bb

[8 TeV] ttH ! 2` (same sign)

[8 TeV] ttH ! 3`

[8 TeV] ttH ! 4`

[8 TeV] ttH ! tt(bb)

[8 TeV] ttH ! tt(��)

[8 TeV] ttH ! tt(⌧⌧)

CMS

4.25!

5.34!

5.3!

 �4.8

H ! WW

H ! ��

H ! ⌧⌧

V H ! V bb

ttH ! ttbbCDF

7.81!

9.49!

µ̂

in total: 80 signal rate + 4 mass measurements

T. Stefaniak (SCIPP, UCSC) HiggsBounds/HiggsSignals ATLAS Physics Jamboree 14 / 19
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Measurements in HiggsSignals 1.2

34

[T. Stefaniak, Nov 2014]
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Higgs Couplings in Loops
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‣New physics may show up in loops, contributing to gg and γγ channels

‣Charged SUSY particles or additional charged scalars

‣Neglect modifications 
to tree level couplings
‣ Simultaneous fit:

• κg = 0.99 ± 0.15
• κγ = 1.08 ± 0.21

κγ

κ g
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68% 95% Correlations
W 1.00 ± 0.06 [0.88, 1.11] 1.00
Z 1.09 ± 0.10 [0.88, 1.27] �0.12 1.00
 f 0.94 ± 0.12 [0.72, 1.18] 0.35 �0.16 1.00

Table 10: SM-like solution in the fit of W , Z , and  f to the Higgs-
boson signal strengths.
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Figure 7: Two-dimensional probability distributions for W and  f
(left), for Z and  f (center), and for W and Z (right) at 68%, 95%,
and 99% (darker to lighter), obtained from the fit to the Higgs-boson
signal strengths.

power divergences in the oblique corrections. It means
that the detailed information on UV theory is necessary
for calculating the oblique corrections. The fit results
to the Higgs-boson signal strengths are summarized in
Table 10 and Fig. 7, which are consistent with custodial
symmetry.

We also consider the case where the universality in
the couplings to the fermions is relaxed by introducing
`, u and d for the couplings to the charged leptons,
to the up-type quarks, and to the down-type quarks. In
this case, the Higgs-boson signal strengths are symmet-
ric under the exchanges ` $ �` and/or {V , u, d}$
{�V , �u, �d}. Therefore, we consider only the pa-
rameter space where both V and ` are positive. The
constraints on the scale factors from the Higgs-boson
signal strengths are presented in Table 11 and Fig. 8.
By adding the EWPO to the fit, the constraints become
stronger as shown in Table 12 and Fig. 9.

5. Summary

We have updated the EW precision fits in the SM and
beyond taking into account the recent theoretical and
experimental developments. The results of the SM fit
are presented in Table 1, while the constraints on the
NP parameters (the oblique and epsilon parameters, and
the modified Zbb̄ and HVV couplings) are summarized
in Tables 2-7. Furthermore, we have performed fits of
the scale factors of the Higgs-boson couplings to the
Higgs-boson signal strengths and the EW precision data
as summarized in Tables 8-12. More detailed analyses
and results will be presented in a future publication [67].

68% 95% Correlations
V 1.07 ± 0.09 [0.87, 1.24] 1.00
` 1.13 ± 0.17 [0.80, 1.47] 0.54 1.00
u 0.89 ± 0.13 [0.65, 1.18] 0.37 0.36 1.00
d 1.01 ± 0.24 [0.52, 1.51] 0.79 0.60 0.75 1.00

Table 11: SM-like solution in the fit of V , `, u, and d to the Higgs-
boson signal strengths.
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from the fit to the Higgs-boson signal strengths.

68% 95% Correlations
V 1.03 ± 0.02 [0.99, 1.07] 1.00
` 1.10 ± 0.14 [0.82, 1.38] 0.14 1.00
u 0.88 ± 0.12 [0.66, 1.15] 0.09 0.23 1.00
d 0.92 ± 0.15 [0.65, 1.26] 0.28 0.35 0.81 1.00

Table 12: Same as Table 11, but considering both the Higgs-boson
signal strengths and the EWPO.
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Figure 9: Same as Fig. 8, but considering both the Higgs-boson signal
strengths and the EWPO.
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Table 10: SM-like solution in the fit of W , Z , and  f to the Higgs-
boson signal strengths.
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power divergences in the oblique corrections. It means
that the detailed information on UV theory is necessary
for calculating the oblique corrections. The fit results
to the Higgs-boson signal strengths are summarized in
Table 10 and Fig. 7, which are consistent with custodial
symmetry.

We also consider the case where the universality in
the couplings to the fermions is relaxed by introducing
`, u and d for the couplings to the charged leptons,
to the up-type quarks, and to the down-type quarks. In
this case, the Higgs-boson signal strengths are symmet-
ric under the exchanges ` $ �` and/or {V , u, d}$
{�V , �u, �d}. Therefore, we consider only the pa-
rameter space where both V and ` are positive. The
constraints on the scale factors from the Higgs-boson
signal strengths are presented in Table 11 and Fig. 8.
By adding the EWPO to the fit, the constraints become
stronger as shown in Table 12 and Fig. 9.

5. Summary

We have updated the EW precision fits in the SM and
beyond taking into account the recent theoretical and
experimental developments. The results of the SM fit
are presented in Table 1, while the constraints on the
NP parameters (the oblique and epsilon parameters, and
the modified Zbb̄ and HVV couplings) are summarized
in Tables 2-7. Furthermore, we have performed fits of
the scale factors of the Higgs-boson couplings to the
Higgs-boson signal strengths and the EW precision data
as summarized in Tables 8-12. More detailed analyses
and results will be presented in a future publication [67].
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V 1.07 ± 0.09 [0.87, 1.24] 1.00
` 1.13 ± 0.17 [0.80, 1.47] 0.54 1.00
u 0.89 ± 0.13 [0.65, 1.18] 0.37 0.36 1.00
d 1.01 ± 0.24 [0.52, 1.51] 0.79 0.60 0.75 1.00
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boson signal strengths.
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V 1.03 ± 0.02 [0.99, 1.07] 1.00
` 1.10 ± 0.14 [0.82, 1.38] 0.14 1.00
u 0.88 ± 0.12 [0.66, 1.15] 0.09 0.23 1.00
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Table 12: Same as Table 11, but considering both the Higgs-boson
signal strengths and the EWPO.
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Wκ
0.6 0.8 1 1.2

f
κ

-1

0

1

Zκ
0.6 0.8 1 1.2 1.4

f
κ

-1

0

1

Wκ
0.6 0.8 1 1.2

Z
κ

0.6

0.8

1

1.2

1.4

Figure 7: Two-dimensional probability distributions for W and  f
(left), for Z and  f (center), and for W and Z (right) at 68%, 95%,
and 99% (darker to lighter), obtained from the fit to the Higgs-boson
signal strengths.

power divergences in the oblique corrections. It means
that the detailed information on UV theory is necessary
for calculating the oblique corrections. The fit results
to the Higgs-boson signal strengths are summarized in
Table 10 and Fig. 7, which are consistent with custodial
symmetry.

We also consider the case where the universality in
the couplings to the fermions is relaxed by introducing
`, u and d for the couplings to the charged leptons,
to the up-type quarks, and to the down-type quarks. In
this case, the Higgs-boson signal strengths are symmet-
ric under the exchanges ` $ �` and/or {V , u, d}$
{�V , �u, �d}. Therefore, we consider only the pa-
rameter space where both V and ` are positive. The
constraints on the scale factors from the Higgs-boson
signal strengths are presented in Table 11 and Fig. 8.
By adding the EWPO to the fit, the constraints become
stronger as shown in Table 12 and Fig. 9.

5. Summary

We have updated the EW precision fits in the SM and
beyond taking into account the recent theoretical and
experimental developments. The results of the SM fit
are presented in Table 1, while the constraints on the
NP parameters (the oblique and epsilon parameters, and
the modified Zbb̄ and HVV couplings) are summarized
in Tables 2-7. Furthermore, we have performed fits of
the scale factors of the Higgs-boson couplings to the
Higgs-boson signal strengths and the EW precision data
as summarized in Tables 8-12. More detailed analyses
and results will be presented in a future publication [67].

68% 95% Correlations
V 1.07 ± 0.09 [0.87, 1.24] 1.00
` 1.13 ± 0.17 [0.80, 1.47] 0.54 1.00
u 0.89 ± 0.13 [0.65, 1.18] 0.37 0.36 1.00
d 1.01 ± 0.24 [0.52, 1.51] 0.79 0.60 0.75 1.00

Table 11: SM-like solution in the fit of V , `, u, and d to the Higgs-
boson signal strengths.
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d (bottom-right) at 68%, 95%, and 99% (darker to lighter), obtained
from the fit to the Higgs-boson signal strengths.

68% 95% Correlations
V 1.03 ± 0.02 [0.99, 1.07] 1.00
` 1.10 ± 0.14 [0.82, 1.38] 0.14 1.00
u 0.88 ± 0.12 [0.66, 1.15] 0.09 0.23 1.00
d 0.92 ± 0.15 [0.65, 1.26] 0.28 0.35 0.81 1.00

Table 12: Same as Table 11, but considering both the Higgs-boson
signal strengths and the EWPO.
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strengths and the EWPO.
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68% 95% Correlations
W 1.00 ± 0.06 [0.88, 1.11] 1.00
Z 1.09 ± 0.10 [0.88, 1.27] �0.12 1.00
 f 0.94 ± 0.12 [0.72, 1.18] 0.35 �0.16 1.00

Table 10: SM-like solution in the fit of W , Z , and  f to the Higgs-
boson signal strengths.
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signal strengths.

power divergences in the oblique corrections. It means
that the detailed information on UV theory is necessary
for calculating the oblique corrections. The fit results
to the Higgs-boson signal strengths are summarized in
Table 10 and Fig. 7, which are consistent with custodial
symmetry.

We also consider the case where the universality in
the couplings to the fermions is relaxed by introducing
`, u and d for the couplings to the charged leptons,
to the up-type quarks, and to the down-type quarks. In
this case, the Higgs-boson signal strengths are symmet-
ric under the exchanges ` $ �` and/or {V , u, d}$
{�V , �u, �d}. Therefore, we consider only the pa-
rameter space where both V and ` are positive. The
constraints on the scale factors from the Higgs-boson
signal strengths are presented in Table 11 and Fig. 8.
By adding the EWPO to the fit, the constraints become
stronger as shown in Table 12 and Fig. 9.

5. Summary

We have updated the EW precision fits in the SM and
beyond taking into account the recent theoretical and
experimental developments. The results of the SM fit
are presented in Table 1, while the constraints on the
NP parameters (the oblique and epsilon parameters, and
the modified Zbb̄ and HVV couplings) are summarized
in Tables 2-7. Furthermore, we have performed fits of
the scale factors of the Higgs-boson couplings to the
Higgs-boson signal strengths and the EW precision data
as summarized in Tables 8-12. More detailed analyses
and results will be presented in a future publication [67].

68% 95% Correlations
V 1.07 ± 0.09 [0.87, 1.24] 1.00
` 1.13 ± 0.17 [0.80, 1.47] 0.54 1.00
u 0.89 ± 0.13 [0.65, 1.18] 0.37 0.36 1.00
d 1.01 ± 0.24 [0.52, 1.51] 0.79 0.60 0.75 1.00

Table 11: SM-like solution in the fit of V , `, u, and d to the Higgs-
boson signal strengths.
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Figure 8: Two-dimensional probability distributions for V and `
(top-left), for V and u (top-center), for V and d (top-right), for
` and u (bottom-left), for ` and d (bottom-center), and for u and
d (bottom-right) at 68%, 95%, and 99% (darker to lighter), obtained
from the fit to the Higgs-boson signal strengths.

68% 95% Correlations
V 1.03 ± 0.02 [0.99, 1.07] 1.00
` 1.10 ± 0.14 [0.82, 1.38] 0.14 1.00
u 0.88 ± 0.12 [0.66, 1.15] 0.09 0.23 1.00
d 0.92 ± 0.15 [0.65, 1.26] 0.28 0.35 0.81 1.00

Table 12: Same as Table 11, but considering both the Higgs-boson
signal strengths and the EWPO.
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Figure 9: Same as Fig. 8, but considering both the Higgs-boson signal
strengths and the EWPO.
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W 1.00 ± 0.06 [0.88, 1.11] 1.00
Z 1.09 ± 0.10 [0.88, 1.27] �0.12 1.00
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Table 10: SM-like solution in the fit of W , Z , and  f to the Higgs-
boson signal strengths.
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Figure 7: Two-dimensional probability distributions for W and  f
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and 99% (darker to lighter), obtained from the fit to the Higgs-boson
signal strengths.

power divergences in the oblique corrections. It means
that the detailed information on UV theory is necessary
for calculating the oblique corrections. The fit results
to the Higgs-boson signal strengths are summarized in
Table 10 and Fig. 7, which are consistent with custodial
symmetry.

We also consider the case where the universality in
the couplings to the fermions is relaxed by introducing
`, u and d for the couplings to the charged leptons,
to the up-type quarks, and to the down-type quarks. In
this case, the Higgs-boson signal strengths are symmet-
ric under the exchanges ` $ �` and/or {V , u, d}$
{�V , �u, �d}. Therefore, we consider only the pa-
rameter space where both V and ` are positive. The
constraints on the scale factors from the Higgs-boson
signal strengths are presented in Table 11 and Fig. 8.
By adding the EWPO to the fit, the constraints become
stronger as shown in Table 12 and Fig. 9.

5. Summary

We have updated the EW precision fits in the SM and
beyond taking into account the recent theoretical and
experimental developments. The results of the SM fit
are presented in Table 1, while the constraints on the
NP parameters (the oblique and epsilon parameters, and
the modified Zbb̄ and HVV couplings) are summarized
in Tables 2-7. Furthermore, we have performed fits of
the scale factors of the Higgs-boson couplings to the
Higgs-boson signal strengths and the EW precision data
as summarized in Tables 8-12. More detailed analyses
and results will be presented in a future publication [67].

68% 95% Correlations
V 1.07 ± 0.09 [0.87, 1.24] 1.00
` 1.13 ± 0.17 [0.80, 1.47] 0.54 1.00
u 0.89 ± 0.13 [0.65, 1.18] 0.37 0.36 1.00
d 1.01 ± 0.24 [0.52, 1.51] 0.79 0.60 0.75 1.00

Table 11: SM-like solution in the fit of V , `, u, and d to the Higgs-
boson signal strengths.
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Figure 8: Two-dimensional probability distributions for V and `
(top-left), for V and u (top-center), for V and d (top-right), for
` and u (bottom-left), for ` and d (bottom-center), and for u and
d (bottom-right) at 68%, 95%, and 99% (darker to lighter), obtained
from the fit to the Higgs-boson signal strengths.

68% 95% Correlations
V 1.03 ± 0.02 [0.99, 1.07] 1.00
` 1.10 ± 0.14 [0.82, 1.38] 0.14 1.00
u 0.88 ± 0.12 [0.66, 1.15] 0.09 0.23 1.00
d 0.92 ± 0.15 [0.65, 1.26] 0.28 0.35 0.81 1.00

Table 12: Same as Table 11, but considering both the Higgs-boson
signal strengths and the EWPO.
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Figure 9: Same as Fig. 8, but considering both the Higgs-boson signal
strengths and the EWPO.

only Higgs signal strength
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‣ Full EW one- and two-loop 
calculation of fermionic and bosonic 
contributions

‣ One- and two-loop QCD 
corrections and leading terms of 
higher order corrections

‣ Results for Δr include terms of order 
O(α), O(ααs), O(ααs2), O(α2ferm), 
O(α2bos), O(α2αsmt4), O(α3mt6)

‣ Uncertainty estimate:
• missing terms of order O(α2αs): 

about 3 MeV (from O(α2αsmt4))
• electroweak three-loop 

correction O(α3): < 2 MeV
• three-loop QCD corrections 

O(ααs3): < 2 MeV
• Total: δMW ≈ 4 MeV

Calculation of MW

[M Awramik et al., Phys. Rev. D69, 053006 (2004)]

[M Awramik et al., Phys. Rev. Lett. 89, 241801 (2002)]A. Freitas et al. / Physics Letters B 495 (2000) 338–346 341

Fig. 2. Two-loop vertex diagrams containing a triangle subgraph,
which require a careful treatment of γ5 in D dimensions.

a finite contribution, so that it can be evaluated in
four dimensions without further complications. 1 The
fermion line appearing in the second loop also yields
an ε-tensor contribution, which results, after contrac-
tion with the ε-tensor from the triangle subgraph, in a
non-vanishing contribution to the result for #r .
As mentioned above, we perform the renormaliza-

tion within the on-shell scheme. It involves a one-loop
subrenormalization of the Faddeev–Popov ghost sec-
tor of the theory, which is associated with the gauge-
fixing part. The gauge-fixing part is kept invariant un-
der renormalization. For technical convenience, we
manage this by a renormalization of the gauge pa-
rameters in such a way that it precisely cancels the
renormalization of the parameters and fields in the
gauge-fixing Lagrangian. 2 To this end we have al-
lowed two different bare gauge parameters for both W
and Z, ξW,Z

1 and ξ
W,Z
2 , and also mixing gauge parame-

ters, ξγZ and ξZγ . The renormalized parameters com-
ply with the Rξ gauge, with one free gauge parameter
for each gauge boson. With this prescription no coun-

1 For recent discussions of practical ways of treating γ5 in
higher-order calculations, see also Refs. [28,29].
2 An alternative way of achieving that the gauge-fixing sector

does not give rise to counterterm contributions would have been to
add the gauge-fixing part to the Lagrangian only after renormaliza-
tion, in which case the renormalized gauge transformations would
have to be used.

terterm contributions arise from the gauge-fixing sec-
tor. Starting at the two-loop level, counterterm contri-
butions from the ghost sector have to be taken into ac-
count in the calculation of physical amplitudes. They
follow from the variation of the gauge-fixing terms Fa

under infinitesimal gauge transformations. We have
derived all the counterterms arising from the ghost
sector (extending the results of Ref. [30] to a gen-
eral Rξ gauge) and implemented them into the pro-
gram FeynArts. In this way we could verify the finite-
ness of individual (gauge-parameter-dependent) build-
ing blocks (e.g., the W- and the Z-boson self-energy)
as a further check of the calculation.
Concerning the mass renormalization of unstable

particles, from two-loop order on it makes a difference
whether the mass is defined according to the real part
of the complex pole of the S matrix,

(4)M2 = !M2 − i !M !Γ ,

or according to the pole of the real part of the
propagator. In Eq. (4) M denotes the complex pole
of the S matrix and !M , !Γ the corresponding mass and
width of the unstable particle. We use the symbol M̃
for the real pole.
In the context of the present calculation, these

considerations are relevant to the renormalization of
the gauge-boson masses, MW and MZ. The two-loop
mass counterterms according to the definition of the
mass as the real part of the complex pole are given by

δ !M2
W,(2) =Re

{
ΣW
T,(2)

(
M2
W

)}
− δM2

W,(1) δZ
W
(1)

(5)+ Im
{
ΣW′
T,(1)

(
M2
W

)}
Im

{
ΣW
T,(1)

(
M2
W

)}
,

δ !M2
Z,(2) =Re{ΣZZ

T,(2)
(
M2
Z
)} − δM2

Z,(1) δZ
ZZ
(1)

+ M2
Z
4

(
δZ

γZ
(1)

)2 +
(
Im

{
Σ

γZ
T,(1)

(
M2
Z
)})2

M2
Z

(6)+ Im
{
ΣZZ′
T,(1)

(
M2
Z
)}
Im

{
ΣZZ
T,(1)

(
M2
Z
)}

,

where ΣT,(1), ΣT,(2) denote the transverse parts of
the one-loop and two-loop self-energies (the terms
from subloop renormalization are understood to be
contained in the two-loop self-energies), and Σ ′

T,(1)
means the derivative of the one-loop self-energy with
respect to the external momentum squared. Field
renormalization constants are indicated as δZV . The
relations to the mass counterterms according to the
real-pole definition, δM̃2

W,(2) and δM̃2
Z,(2), are given

A. Freitas et al. / Physics Letters B 495 (2000) 338–346 343

contains the following contributions

!r = !r(α) + !r(ααs) + !r(αα2s )

(9)+ !r(Nfα
2) + !r(N2

f α
2),

where !r(α) is the one-loop result, Eq. (3), !r(ααs)

and !r(αα2s ) are the two-loop [10] and three-loop [11]
QCD corrections, while !r(Nfα

2) is the new elec-
troweak two-loop result. The notation (Nfα

2) symbol-
izes the contribution of all diagrams containing one
fermion loop, where Nf stands both for the top/bottom
contribution and for all light-fermion species. The
term !r(N2

f α
2) contains the pure fermion-loop contri-

butions in two-loop order. Since the pure fermion-loop
contributions in three- and four-loop order have been
found to be numerically small, as a consequence of
accidental numerical cancellations, with a net effect of
only about 1 MeV in MW (using the real-pole defi-
nition of the gauge-boson masses) [17], we have not
included them here.
In Fig. 3 the different contributions to!r are shown

as a function of MH. Here MW is kept fixed at its
experimental central value, MW = 80.419 GeV, and
mt = 174.3 GeV [34] is used. The effects of the QCD

corrections, of the two-loop corrections induced by a
resummation of !α, and of the purely electroweak
fermionic two-loop corrections are shown separately.
The purely electroweak two-loop contributions are
sizeable and amount to about 10% of the one-loop
result. We have compared the Higgs-mass dependence
of !r with the result previously obtained in Ref. [15]
and found perfect agreement.
The prediction for MW is obtained from the input

parameters by solving Eq. (2). Since!r itself depends
on MW this is technically done using an iterative
procedure. The prediction forMW based on the results
of Eq. (9) is shown in Fig. 4 as a function of MH
for mt = 174.3± 5.1 GeV [34] and !α = 0.05954±
0.00065 [35]. The current experimental value,Mexp

W =
80.419 ± 0.038 GeV [4], and the experimental 95%
C.L. lower bound on MH (MH = 107.9 GeV [36])
from the direct search are also indicated. The plot
shows the well-known preference for a light Higgs
boson within the SM. Confronting the theoretical
prediction (allowing a variation ofmt, which at present
dominates the theoretical uncertainty, and !α within
1σ ) with the 1σ region of M

exp
W and the 95% C.L.

lower bound on MH, only a rather small region in the

Fig. 3. Different contributions to !r as a function of MH. The one-loop contribution, !r(α) , is supplemented by the two-loop and three-loop
QCD corrections, !r

(α)
QCD ≡ !r(ααs) + !r(αα2s ), and the fermionic electroweak two-loop contributions, !r(α2) ≡ !r(Nfα

2) + !r(N2f α2). For

comparison, the effect of the two-loop corrections induced by a resummation of !α, !r
(α2)
!α , is shown separately.

A Freitas et al., Phys. Lett. B495, 338 (2000)]

loop momenta. When both momenta are ‘‘soft’’ (! MW),
as in Fig. 1(b), the propagators of the W and Z bosons are
expanded leading to a correction of order !=M4

W in the
effective theory. For one momentum soft and one ‘‘hard’’
("MW), as in Figs. 1(c) and 1(d), corrections of either
order, !=M2

W or 1=M4
W in the effective theory, are gen-

erated. The contribution to the matching coefficient
comes only from the region where both momenta are
hard, as in Fig. 1(e). In this case, all of the light particle
masses and momenta should be put to zero. By these
arguments it can be shown that !r can be obtained by
simply taking the sum of all the diagrams and putting all
external momenta and light masses to zero. The proce-
dure should generate no spurious infrared divergences,
while the physical divergences connected with the photon
should be contained in the corrections of the effective
theory. As is known, the Fermi theory corrections are
finite; therefore, the !r correction obtained as above
should also be finite.

Previous calculations of !r have been based on a
different method of factorization originally devised in
[11]. This procedure consists of subtracting from the
infrared divergent SM diagrams the respective Fermi
theory diagrams in Pauli-Villars regularization. The dif-
ference is well defined in the limit of zero light masses
and external momenta. It turns out, however, that the
QEDWard identity, which is responsible for the finiteness
of the corrections in the Fermi theory, implies in this case
the vanishing of the sum of the subtracted diagrams. This
proves that both procedures are equivalent.

The evaluation of two loop corrections to a four-
fermion process requires the full second order renormali-
zation of the SM Lagrangian in all but the Higgs sector,
where first order suffices. The comparison with experi-
ment imposes the use of on-shell parameters for the final
result. Throughout this work the on-shell scheme was

used, with a procedure similar to the one described in
[5]. The only substantial difference concerns the treat-
ment of tadpoles.

It is known that gauge invariance of mass counterterms
requires inclusion of tadpoles [12,13] (at the two loop
level this has been explicitly shown in [14]). In this case,
however, one cannot use one-particle-irreducible (1PI)
Green functions. In order to have gauge invariant counter-
terms and 1PI Green functions only, a special procedure
was designed. An additional renormalization constant for
the bare vacuum expectation value v0, denoted Zv, has
been introduced and explicitly split from the bare masses

v0 ! v0Z
1=2
v ; (4)

M0
W;Z ! M0

W;ZZ
1=2
v : (5)

The term linear in the Higgs field H in the Lagrangian

T0H0 # M0
Ws

0
W

e0
$M0

H%2Z1=2
v $Zv & 1%H0 (6)

is then used to determine Zv, through the requirement that
tadpoles are canceled. It can be proved [12,15] that the
bare masses are gauge invariant in this case (an equiva-
lent procedure which makes use of the effective potential
has been used in [16]).

The calculation of the two loop bosonic contributions
to muon decay was performed by means of a completely
automated system. The diagram generation stage was
done by the C'' library DiaGen [17]. The tensor reduc-
tion of two loop propagator diagrams was accomplished
with the algorithm described in [18], whereas vacuum
diagrams were treated with integration by parts identities
[19]. For algebraic manipulations, the program FORM [20]
was used. The two loop two-point integrals were numeri-
cally evaluated with single integral representations of
the package S2LSE [21]. The latter was modified for qua-
druple precision, which was needed due to large cancel-
lations (independent terms grow as M8

H, while the result
behaves as M2

H).
The size of the software required several tests. The

following algebraic checks were performed: ultraviolet
and infrared finiteness, by cancellation of poles in dimen-
sional regularization; gauge invariance, by independence
of the three gauge parameters of the general R" gauge for
the SM; Slavnov-Taylor identities for two-point func-
tions, as given in [18], both for on-shell integrals and
by expansion in the external momentum to second order.

Several numerical tests were also done: (i) All of
the master integrals were evaluated independently by
means of deep mass difference and large-mass expan-
sions. (ii) Each of the two-point on-shell diagrams was
calculated separately with the help of small-momentum
and different large-mass expansions. (iii) The result of
[14] for the W and Z mass counterterms was reproduced
to precision dictated by the order of the expansions

FIG. 1. A typical muon decay diagram (a) and the contribu-
tions to its large mass expansion according to the momenta
(b) k1-soft, k2-soft; (c) soft-hard; (d) hard-soft; (e) hard-hard.

VOLUME 89, NUMBER 24 P H Y S I C A L R E V I E W L E T T E R S 9 DECEMBER 2002

241801-2 241801-2

37



Roman Kogler The global electroweak fit 

‣ Effective mixing angle:

‣ Two-loop EW and QCD correction 
to Δκ known, leading terms of higher 
order QCD corrections

‣ fermionic two-loop correction about 
10−3, whereas bosonic one 10−5

‣ Uncertainty estimate obtained with 
different methods, geometric 
progression:

Calculation of sin2(θleff)
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(d)
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Figure 1: Genuine fermionic two-loop Zl+l− vertex diagrams contributing to sin2 θlept
eff .

contributions to the ρ parameter of O(G3
µm6

t ) and O(G2
µαsm4

t ) for large top-quark mass

[14], as well as O(G3
µM4

H) for large Higgs mass [15] have been computed.

Higher order QCD corrections to sin2 θlept
eff have been calculated at O(ααs) [16] and for

the top-bottom contributions at O(αα2
s ) [17] and O(αα3

s ) [18]. The O(αα2
s ) contributions

with light quarks in the loops can be derived from eqs. (29)–(31) in [19] and turn out to

be completely negligible. For the electroweak two-loop contributions, only partial results

using large mass expansions in the Higgs mass [20] and top-quark mass [21 – 23] have

been known previously. Concerning the expansion in mt, the formally leading term of

O(G2
µm4

t ) [21, 22] and the next-to-leading term of O(G2
µm2

tM
2
Z) [23] were found to be

numerically significant and of similar magnitude. Therefore, a complete calculation of

electroweak two-loop corrections to sin2 θlept
eff beyond the leading terms of expansions is

desirable.

As a first step in this direction, exact results have been obtained for the Higgs-mass

dependence (i.e. the quantity sin2 θlept
eff,sub(MH) ≡ sin2 θlept

eff (MH)−sin2 θlept
eff (MH = 65 GeV))

of the two-loop corrections with at least one closed fermion loop to the precision observ-

ables [13, 24]. They were shown to agree well with the previous results of the top-quark

mass expansion [25].

This paper discusses the complete computation of all electroweak two-loop corrections

to sin2 θlept
eff . In addition to the corrections to the prediction of the W -boson mass, which

have been analyzed before [4, 5], this includes all two-loop diagrams contributing to the

Zl+l− vertex on the Z pole. The diagrams can be conveniently divided into two groups;

fermionic contributions with at least one closed fermion loop, and bosonic contributions

without closed fermion loops. The genuine fermionic two-loop vertex diagrams are repre-

sented by the generic topologies in figure 1 and some examples of bosonic two-loop diagrams

are given in figure 2.

Results for the complete two-loop corrections have been presented first in Ref. [26, 27].

– 3 –
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Figure 2: Examples of bosonic two-loop Zl+l− vertex diagrams contributing to sin2 θlept
eff .

The results for the fermionic contributions have been confirmed in Ref. [28] and partial

results for the bosonic contributions were also obtained in Ref. [29]. This paper describes

the computational methods and analysis in more detail.

The paper is organized as follows. In section 2, the process e+e− → l+l− is analyzed

at next-to-next-to-leading order near the Z-boson pole and the O(α2) definition of the

sin2 θlept
eff is extracted. Furthermore the general strategies for the calculation of two-loop

contributions to the form factor ∆κ are discussed. Sections 3 and 4 explain the calculation

of the fermionic and bosonic two-loop diagrams in detail. For two-loop vacuum and self-

energy diagrams, well-established techniques exist and have been used for the computation

of MW [4 – 6]. The new part in this project are the two-loop vertex topologies, which have

been treated with two conceptually independent methods. A discussion of the numerical

results and remaining theoretical uncertainties due to unknown higher orders can be found

in section 5. In addition to the effective leptonic weak mixing angle, results are given also

for the effective weak mixing angle for other final state flavors, i.e. for couplings of the Z

boson to other fermions. Finally the implementation of our new results into the program

Zfitter is described.

2. Outline of the calculation

The two-loop corrections to the effective weak mixing angle sin2 θf
eff are part of the next-

to-next-to-leading order corrections to the process e+e− → f f̄ for center-of-mass energies

near the Z-boson mass,
√

s ≈ MZ. To set the scene for this calculation, a framework

for the next-to-next-to-leading order analysis of f f̄ production needs to be established.

Furthermore it has to be checked whether sin2 θf
eff is a well-defined, i.e. gauge-invariant

and finite, quantity at this order in perturbation theory.

– 4 –
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contributions to the ρ parameter of O(G3
µm6

t ) and O(G2
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t ) for large top-quark mass

[14], as well as O(G3
µM4

H) for large Higgs mass [15] have been computed.

Higher order QCD corrections to sin2 θlept
eff have been calculated at O(ααs) [16] and for

the top-bottom contributions at O(αα2
s ) [17] and O(αα3

s ) [18]. The O(αα2
s ) contributions

with light quarks in the loops can be derived from eqs. (29)–(31) in [19] and turn out to

be completely negligible. For the electroweak two-loop contributions, only partial results

using large mass expansions in the Higgs mass [20] and top-quark mass [21 – 23] have

been known previously. Concerning the expansion in mt, the formally leading term of

O(G2
µm4

t ) [21, 22] and the next-to-leading term of O(G2
µm2

tM
2
Z) [23] were found to be

numerically significant and of similar magnitude. Therefore, a complete calculation of

electroweak two-loop corrections to sin2 θlept
eff beyond the leading terms of expansions is

desirable.

As a first step in this direction, exact results have been obtained for the Higgs-mass

dependence (i.e. the quantity sin2 θlept
eff,sub(MH) ≡ sin2 θlept

eff (MH)−sin2 θlept
eff (MH = 65 GeV))

of the two-loop corrections with at least one closed fermion loop to the precision observ-

ables [13, 24]. They were shown to agree well with the previous results of the top-quark

mass expansion [25].

This paper discusses the complete computation of all electroweak two-loop corrections

to sin2 θlept
eff . In addition to the corrections to the prediction of the W -boson mass, which

have been analyzed before [4, 5], this includes all two-loop diagrams contributing to the

Zl+l− vertex on the Z pole. The diagrams can be conveniently divided into two groups;

fermionic contributions with at least one closed fermion loop, and bosonic contributions

without closed fermion loops. The genuine fermionic two-loop vertex diagrams are repre-

sented by the generic topologies in figure 1 and some examples of bosonic two-loop diagrams

are given in figure 2.

Results for the complete two-loop corrections have been presented first in Ref. [26, 27].
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from asymmetries measured at center-of-mass energies away from the Z pole, requiring

a theoretical extrapolation in order to match it to sin2 θlept
eff on the Z pole. The current

experimental accuracy, sin2 θlept
eff = 0.23147 ± 0.00017 [1], could be improved by an order

of magnitude at a future high-luminosity linear collider running in a low-energy mode at

the Z boson pole (GigaZ) [2]. This offers the prospect for highly sensitive tests of the

electroweak theory [3], provided that the accuracy of the theoretical prediction matches

the experimental precision.

Typically, the theoretical prediction of sin2 θlept
eff within the Standard Model is given in

terms of the following input parameters: the fine structure constant α, the Fermi constant

Gµ, the Z-boson mass MZ and the top-quark mass mt (and other fermion masses whenever

they are numerically relevant). The W -boson mass MW is calculated from the Fermi

constant, which is precisely derived from the muon decay lifetime. As a consequence, the

computation of sin2 θlept
eff involves two major parts: the radiative corrections to the relation

between Gµ and MW, and the corrections to the Z-lepton vertex form factors. The latter

can be incorporated into the quantity κ = 1 + ∆κ, defined in the on-shell scheme,

sin2 θlept
eff =

(

1 − M2
W/M2

Z

)

(1 + ∆κ) , (1.2)

At tree-level, ∆κ = 0 and the sine of the effective mixing angle is identical to the sine of

the on-shell weak mixing angle sin2 θW ≡ sW = 1 − M2
W/M2

Z. The quantity ∆κ is only

weakly sensitive to MW.

For the computation of the W -boson mass, the complete electroweak two-loop correc-

tions, including partial higher-order corrections, have been carried out in Ref. [4 – 7]. In

this report, the calculation of the corresponding contributions for the form factor ∆κ and

combined predictions for sin2 θlept
eff will be discussed.

The quantum corrections to sin2 θlept
eff have been under extensive theoretical study over

the last two decades. The one-loop result [8, 9] involves large fermionic contributions from

the leading contribution to the ρ parameter, ∆ρ, which is quadratically dependent on the

top-quark mass mt, resulting from the top-bottom mass splitting [10]. The correction ∆ρ

enters both in the computation of MW from the Fermi constant (for a discussion see e.g.

Ref. [4, 5]), as well as into the vertex correction factor ∆κ,

1 + ∆κ(α) = 1 +
c2
W

s2
W

∆ρ + ∆κrem(MH), (1.3)

with c2
W = M2

W/M2
Z, s2

W = 1−M2
W/M2

Z. The remainder part ∆κrem contains in particular

the dependence on the Higgs-boson mass, MH.

Beyond the one-loop order, resummations of the leading one-loop contribution ∆ρ

have been derived [11, 12]. They correctly take into account the terms of the form (∆ρ)2

and (∆α∆ρ). Here ∆α is the shift in the fine structure constant due to light fermions,

∆α ∝ log mf , which enters through the corrections to the relation between Gµ and MW,

since ∆κ = ∆κ(MW) is a function of MW. These resummation results have been confirmed

and extended by an explicit calculation of the pure fermion-loop corrections at O(α2)

(i.e. contributions containing two fermion loops) [13]. Recently, the leading three-loop

– 2 –
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Figure 8: Contribution of several orders of radiative corrections to the effective leptonic weak

mixing angle sin2 θlept
eff as a function of the Higgs mass MH. The tree-level value is not shown.

(a)

MH
[

∆ sin2 θlept
eff

]

ZFITTER

[

∆ sin2 θlept
eff

]

[70]

[GeV] [10−4] [10−4]

100 -0.45 -0.40

200 -0.69 -0.72

600 -1.17 -0.94

1000 -1.60 -1.28

(b)

mt,MH ∆[m4
t ] ∆[m2

t ] ∆[m−4
t ]

[GeV]

175,400 20% 4.3% 0.02%

800,1800 5% 1.9% 0.00002%

Table 3: (a) Difference between the new result of eq. (5.3) and the previous result from ref. [23],
as implemented in Zfitter (left column) and from the fitting formula in ref. [70] (right column).
(b) Convergence of the expansion in m−2

t for the two-loop diagrams with top propagators. Here
∆[mk

t ] = [sin2 θlept
eff ](α2mk

t
)/[sin2 θlept

eff ](α2exact) − 1 is the relative difference between the exact and
the expanded result at the given order.

Ref. [23] introduces higher-order terms that can be sizeable. Here it is important to note

that the OSI scheme in Ref. [23], which is the basis for the implementation of these cor-
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Geometric progression Scale dependence Leading mt terms

O(α2αs) beyond leading m4
t 3.3 . . . 2.8 × 10−5 0.8 . . . 2.1 × 10−5 1.2 . . . 4.3 × 10−5

O(αα3
s ) 1.5 . . . 1.4 0.3 . . . 0.2

O(α3) beyond leading m6
t 2.5 . . . 3.5 0.3 . . . 0.8

Sum 4.4 . . . 4.7 × 10−5

Table 4: Estimation of the uncertainty from different higher order contributions for sin2 θlept
eff , with

the quadratic sum of all error sources. Where applicable, two or three different methods for the
error estimate have been used.

the highest available perturbation order. By varying thus the scale µ of mt,MS in the

O(α2) contributions between m2
t/2 < µ2 < 2m2

t one obtains an error estimate for the

O(α2αs) contributions between 0.1 and 3.9 × 10−5, depending on the value of MH for

10 GeV < MH < 1000 GeV. Similarly, by varying αs(µ) in the O(αα2
s ) corrections between

m2
t/2 < µ2 < 2m2

t leads to an error estimate for the O(αα3
s ) contributions of less than 10−6,

see Tab. 4.

An independent third estimate of the error of the O(α2αs) and O(α3) contributions

can be obtained from the existing leading terms in the expansion for large top quark mass.

Experience from the O(α2) corrections suggests that for moderate values of MH, the leading

mt-term and the remaining non-leading terms are of similar order. These contributions are

shown in the last column of Tab. 4.

As evident from the table, all methods give results of similar order of magnitude, while

the geometric progression method tends to lead to the largest error evaluation. The total

estimated error is therefore computed by summing in quadrature the error from different

contributions obtained by this method. It is found to amount to δthsin2 θlept
eff = 4.7× 10−5.

5.3 Parametrization formulae

Following Ref. [26], the numerical results are expressed in terms of a fitting formula, which

reproduces the exact calculation with maximal and average deviations of 4.5 × 10−6 and

1.2 × 10−6, respectively, as long as the input parameters stay within their 2σ ranges and

the Higgs boson mass in the range 10 GeV ≤ MH ≤ 1 TeV. For the sake of comparability

with the result of Ref. [26], the slightly outdated central values for the experimental input

parameters used there are also kept in the formula

sin2 θf
eff = s0 + d1LH + d2L

2
H + d3L

4
H + d4(∆

2
H − 1) + d5∆α

+ d6∆t + d7∆
2
t + d8∆t(∆H − 1) + d9∆αs + d10∆Z ,

(5.5)

with

LH = log

(

MH

100 GeV

)

, ∆H =
MH

100 GeV
, ∆α =

∆α

0.05907
− 1,

∆t =
( mt

178.0 GeV

)2
− 1, ∆αs =

αs(MZ)

0.117
− 1, ∆Z =

MZ

91.1876 GeV
− 1.

(5.6)

– 22 –

Total: δsin2θleff ≈ 4.7 10−5

JHEP11(2006)048

rections in ZFITTER, uses the MS definition for ∆ρ, which is numerically larger than the

leading m2
t term, so that the resummation effects of ∆ρMS are rather large. Finally, Zfit-

ter versions before 6.40 use an outdated implementation of the QCD corrections. Since

all these contributions are non-negligible at the current level of precision, it is interesting

to study them separately.

In particular, using the results of section 3.1 the effect of the truncated top-mass

expansion is shown in Tab. 3 (b)2. It turns out that the expansion converges quite well

for realistic values of mt and MH. However, the terms beyond the order m2
t induce a

difference of 4.3% in the two-loop corrections with top-bottom loops, corresponding to a

shift of about 0.2 × 10−4 in sin2 θlept
eff , which is roughly a quarter of the total difference

reported in Tab. 3 (a). As a cross-check, also the result for very large values of mt and MH

are shown in Tab. 3 (b), to illustrate that in this case the series converges much faster.

5.2 Error estimate

While the inclusion of the fermionic two-loop corrections is a substantial improvement of

the prediction of sin2 θlept
eff in the Standard Model, uncertainties from missing higher order

contributions can still be sizeable. Here we try to give an estimate of the error induced

by these unknown contributions. The most relevant missing higher order contributions are

corrections of the order O(α2αs) beyond the leading m4
t term, O(α3) beyond the leading

m6
t term and O(αα3

s ). Since the final prediction for sin2 θlept
eff is based on Gµ as input, the

loop effects in the both quantities ∆r (for the computation of MW) and ∆κ (for the Zl+l−

vertex corrections) need to be considered.

When combining the two form factors, it turns out that there are some cancellations

between the known corrections to MW and the Z vertex. It is expected that similar

cancellations occur when adding an additional QCD loop, since QCD corrections enter

with the same relative sign in the corrections to MW and the Z vertex. Since the dominant

missing higher order effects are contributions with an additional QCD loop, it is assumed in

the following that these cancellations are natural and it is justified to study the theoretical

error of both quantities ∆r and ∆κ in conjunction.

A simple method to estimate the higher order uncertainties is based on the assumption

that the perturbation series follows roughly a geometric progression. This presumption

implies relations like

O(α2αs) =
O(α2)

O(α)
O(ααs). (5.4)

From this one obtains the error estimates in the second column of Tab. 4 for the different

higher order contributions, which are given for a range of the Higgs MH mass between 10

GeV and 1000 GeV. To account for possible deviations from the geometric series behavior,

an ad-hoc overall factor
√

2 was included in all error determined via this method.

Alternatively, the error from a higher-order QCD loop can be assessed by varying the

scale of the strong coupling constant αs or the top-quark mass mt in the MS scheme in

2As a by-product of this comparison, we found a typo in Ref. [45], where a term 3

2
m2

t/(M
2
Zs2

W) log c2
W is

missing in the expression for MH ! mt.

– 21 –

[M Awramik et al, Phys. Rev. Lett. 93, 201805 (2004)]

[M Awramik et al., JHEP 11, 048 (2006)]
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‣ Calculation of sin2θeff  for b-quarks 
more involved, because of top quark 
propagators in the Z→bb vertex

‣ Investigation of known discrepancy 
between sin2θeff from leptonic and 
hadronic asymmetry measurements

‣ Two-loop EW correction only 
recently completed, effect of O(10−4)

‣ Now sin2θbbeff known at the same 
order as sin2θeff for leptons and light 
quarks

‣ Uncertainty assumed to be of same 
size as for sin2θeff :

Calculation of sin2(θbbeff)
[M Awramik et al, Nucl. Phys. B813, 174 (2009)]
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Fig. 1. Set of Feynman diagrams required for the calculation of the fermionic two-loop corrections to the Zbb̄ vertex, but
absent in the sin2 θ

lept
eff case. Thick solid lines denote top-quark propagators, while thin lines represent light fermions.

For any two-loop problem, there are four regions to consider. Let k1 and k2 represent the internal
momenta in the loops and p stand for any external momentum, while m generically denotes all
masses that are small compared to mt , m < mt . In our case, m = MW,MZ . Then the four regions
can be identified as follows:

(1) k1 ∼ mt and k2 ∼ mt (expansions in small parameters: p and m),
(2) k1 ∼ m and k2 ∼ mt (expansions in small parameters: p, k1 and m),
(3) k1 ∼ mt and k2 ∼ m (expansions in small parameters: p, k2 and m),
(4) k1 ∼ m and k2 ∼ m (expansions in small parameters: p, k1, k2 and m).

This method allows us to represent two-loop vertex diagrams by a sum of simpler integrals,
namely two-loop propagator and vacuum integrals, plus one-loop integrals. However, higher
orders in the expansion lead to higher powers of propagator denominators in these integrals.
This is not a problem for one-loop or vacuum integrals, as analytic relations are well known;
for relations and references, see, for example, Ref. [16]. For two-loop propagator integrals, we
employ the Laporta algorithm, as proposed in Ref. [22]. This algorithm allows us to automatically
reduce complicated multi-loop integrals with non-trivial numerators to a smaller set of master
integrals with unit numerators. In addition to the well-known integration by parts relations [23],
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Calculation of R0b

Full two-loop calculation of Z→bb̄

‣ The branching ratio R0b:  partial decay width of Z→bb and Z→qq¯ ¯
The branching ratio Rb is defined as the ratio of the partial decay widths of the Z-boson

decay into bottom quarks and into all quarks:

Rb ≡
Γb

Γhad
=

Γb

Γd + Γu + Γs + Γc + Γb
=

1

1 + 2(Γd + Γu)/Γb
, (3)

where Γf stands for the partial decay width into the f f̄ final state. In the last step in (3), the
relationships Γu ≈ Γc and Γd ≈ Γs have been used, which hold to very good approximation.

Up to next-to-next-to-leading order (q = u, d),

Γq

Γb
=

G(0)
q

G(0)
b

+
2

(G(0)
b )2

#e
{

G(0)
b G(1)

q −G(0)
q G(1)

b

}

+
1

(G(0)
b )2

[

G(0)
b R(1)

q −G(0)
q R(1)

b

]

+
1

(G(0)
b )3

#e
{

(G(0)
b )2

[

2G(2)
q + (a(1)q )2 + (v(1)q )2

]

−G(0)
b G(0)

q

[

2G(2)
b + (a(1)b )2 + (v(1)b )2

]

− 4G(0)
b G(1)

q G(1)
b + 4G(0)

q (G(1)
b )2

}

+
1

(G(0)
b )2

[

G(0)
b R(2)

q −G(0)
q R(2)

b −G(0)
b R(1)

q R(1)
b +G(0)

q (R(1)
b )2

]

(4)

+
2

(G(0)
b )3

[

(G(0)
b )2(a(0)q a(1)q R(1)

q,A + v(0)q v(1)q R(1)
q,V)−G(0)

b G(1)
b R(1)

q

+G(0)
q G(1)

b R(1)
b +G(0)

q a(0)b v(0)b (a(0)b v(1)b + v(0)b a(1)b )(R(1)
b,A −R(1)

b,V)

−G(0)
b G(1)

q R(1)
b

]

,

with
G(n)

q = a(0)q a(n)q + v(0)q v(n)q , R(n)
q = (a(0)q )2R(n)

q,A + (v(0)q )2R(n)
q,V. (5)

Here R(n)
q,V and R(n)

q,A incorporate the n-loop QED and QCD corrections to the vector and
axial-vector form factors, which have been calculated already several years ago [23, 24], see
also Ref. [25]. The relevant parts for this calculation are given by

R(1)
d,V = R(1)

d,A = R(1)
b,V = α

12π + αs

π , (6)

R(1)
u,V = R(1)

u,A = α
3π + αs

π , (7)

R(1)
b,A = R(1)

b,V − 6
m2

b

M2
Z

, (8)

R(2)
d,V = − ααs

36π2 + C2

(

αs

π

)2
+ C3

(

αs

π

)3
, (9)

R(2)
d,A = R(2)

d,V − I2
(M2

Z

m2
t

) (

αs

π

)2
− I3

(M2
Z

m2
t

) (

αs

π

)3
, (10)

R(2)
u,V = R(2)

d,V − ααs

12π2 , (11)

R(2)
u,A = R(2)

d,A − ααs

12π2 , (12)

R(2)
b,V = R(2)

d,V + 12
m2

b

M2
Z

αs

π +O(m4
bαs, m

2
bα

2
s ), (13)

R(2)
b,A = R(2)

d,A − 22
m2

b

M2
Z

αs

π − 6
m4

b

M4
Z

+O(m4
bαs, m

2
bα

2
s ). (14)

3

‣ Two-loop corrections small compared to experimental uncertainty (6.6⋅10−4)

1-loop EW and 
QCD correction 

to FSR

2-loop EW 
correction

2-loop EW and 
2+3-loop QCD 

correction to FSR

1+2-loop QCD 
correction to gauge 
boson selfenergies

[A. Freitas et al., JHEP 1208, 050 (2012)
 Erratum ibid. 1305 (2013) 074]

‣ Contribution of same terms as in the calculation of sin2θbbeff 

→ cross-check the two results, found good agreement

MH O(α) + FSRα,αs,α2
s

O(α2
ferm) O(α2

ferm) + FSRα3
s ,ααs,m2

b
αs,m4

b
O(ααs,αα2

s)
[GeV] [10−4] [10−4] [10−4] [10−4]

100 −35.66 −0.856 −2.496 −0.407

200 −35.85 −0.851 −2.488 −0.407

400 −36.09 −0.846 −2.479 −0.406

600 −36.24 −0.836 −2.468 −0.406

1000 −36.45 −0.813 −2.441 −0.406

Table 3: Results for electroweak one- and two-loop corrections to Rb, as defined in eqs. (3,4),
for different values of MH. The other input values are taken from Tab. 1, with a fixed value
for MW. Also shown are the effects of two- and three-loop QCD corrections to the final state
(fourth column) and to gauge-boson selfenergies (fifth column). Here “FSR” stands for the
final-state radiative QCD and QED corrections described by the radiator functions R(n).

tree-level +O(α) O(α2
ferm) + FSRα3

s ,ααs,m2
b
αs,m4

b

MH + FSRα,αs,α2
s

+O(ααs,αα2
s) total

[GeV] [10−4]

100 0.21569 −1.923 0.21549

200 0.21570 −1.919 0.21551

400 0.21572 −1.916 0.21553

600 0.21573 −1.918 0.21554

1000 0.21574 −1.927 0.21555

Table 4: Results for Rb, as in Table 3, but now with MW calculated from Gµ using the SM
prediction. The other input values are taken from Tab. 1.

by a simple parametrization formula:

Rb = R0
b + c1LH + c2L

2
H + c3L

4
H + c4(∆

2
H − 1) + c5∆α

+ c6∆t + c7∆tLH + c8∆αs
+ c9∆

2
αs

+ c10∆Z ,
(21)

with

LH = ln
MH

100 GeV
, ∆H =

MH

100 GeV
, ∆t =

( mt

173.2 GeV

)2
− 1,

∆α =
∆α

0.05900
− 1, ∆αs

=
αs(MZ)

0.1184
− 1, ∆Z =

MZ

91.1876 GeV
− 1. (22)

The numerical coefficients are determined by a fit to the full numerical result, which includes
all radiative corrections mentioned above: the complete O(α) and fermionic O(α2) contri-
butions to the Zff̄ vertex form factors, as well as virtual O(ααs) and O(αα2

s ) corrections
and final-state radiation of order O(αn

s ), (n = 1, 2, 3) and O(ααs). For the W -boson mass

8
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‣ Partial widths are defined inclusively: they contain QCD and QED 
contributions

Radiator Functions

‣ Corrections can be expressed as radiator functions RA,f and RV,f

�ff̄ = Nf
c
GFM3

Z

6
p
2⇡

�
|gA,f |2RA,f + |gV,f |2RV,f

�2

‣ High sensitivity to the strong 
coupling αs

‣ Full four-loop calculation of QCD 
Adler function available (N3LO)

‣ Much reduced scale dependence
‣ Theoretical uncertainty of 0.1 MeV, 

compare to experimental 
uncertainty of 2.0 MeV

[P. Baikov et al., Phys. Rev. Lett. 108, 222003 (2012)]
[P. Baikov et al Phys. Rev. Lett. 104, 132004 (2010)]

3

with s2W = 0.231. The three terms in the brackets dis-
play separately non-singlet, axial singlet and vector sin-
glet contributions.

Let us now evaluate the impact of the newly calcu-
lated terms on the αs-determination from Z-decays. Fol-
lowing our approach for the non-singlet terms (where
a shift δαs = 0.0005 had been obtained [3], consis-
tent with an analysis [31] based on results of the elec-
troweak working group [1] and a modified interface to
ZFITTER v. 6.42 [32, 33] and confirmed by the G-fitter
collaboration [32,30,31]), we consider the quantity Rnc

as “pseudo-observable”. With a starting value Rnc =
20.9612, if evaluated for αs = 0.1190 and without the α4

s

singlet terms, a shift δαs = −0.00008 is obtained after
including the newly calculated contributions.

As discussed in [3], the non-singlet α4
s term leads to a

considerable stabilization of the theory prediction, and,
correspondingly, to a reduction of the theory error. A
similar statement holds true for the singlet contribution.
To illustrate this aspect, the dependence on the renor-
malization scale µ is shown in Fig. 2 for rNS, rVS and
rAS;t,b. The relative variation is significantly reduced in
all three cases. In particular for the vector singlet case
we observe a shift of the result by about a factor 1.45
(for µ = MZ) and a considerable flattening of the result.
Using for example the Principle of Minimal Sensitivity
(PMS) [35] as a guidance for the proper choice of scale,
µ = 0.3MZ seems to be favoured, leading to an amplifi-
cation of the LO result by a factor 1.68 (if the latter is
evaluated for µ = MZ , as done traditionally).

Let us assume that the remaining theory uncertainties
from rNS, rVS and rAS;t,b can be estimated by varying µ be-
tween MZ/3 and 3MZ and using the maximal variation
as twice the uncertainty δr. This leads to δΓNS = 0.101
MeV, δΓV

S = 0.0027 MeV and δΓA
S = 0.042 MeV. Even

adding these terms linearly, they are far below the exper-
imental error of δΓexp = 2.0 MeV [36]. In combination
with the quadratic and quartic mass terms, which are
known to O(α4

s) and O(α3
s) respectively, this analysis

completes the QCD corrections to the Z decay rate.

Let us also comment on the impact of the α4
s singlet

result on the measurement of Rem at low energies, i.e. in
the region accessible at BESS or at B-factories, say be-
tween 3 GeV and 10 GeV. Considering the large luminosi-
ties collected at these machines, a precise αs determina-
tion from Rem seems possible [38]. In the low energy re-
gion only rVS and rVNS contribute. Since

∑

f=u,d,s qf = 0,
the singlet contribution vanishes in the three flavour case.
If we consider the region above charm and below bottom
threshold, say at 10 GeV, only u, d, s and c quarks con-
tribute, the relative weight of the rVS in eq. (1) is given by
(
∑

qf )2/(
∑

q2f ) = 2/5, and thus is fairly suppressed. At
energy of 10 GeV, in the absence of open bottom quark
contribution, it seems appropriate to analyze the results

in an effective four flavour theory with

rVS = −0.41318 a3s(µ)− (5.1757 + 2.5824 lnµ2/s) a4s(µ).

As shown in Fig. 3, it is evident that the scale depen-
dence is softened in NLO. Again a scale µ around 0.3

√
s
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FIG. 2: Scale dependence of (a) non-singlet rNS, (b) vector
singlet r

V
S and (c) axial vector singlet r

A
S;t,b. Dotted, dash-

dotted, dashed and solid curves refer to O(αs) up to O(α4
s)

predictions. αs(MZ) = 0.1190 and nl = 5 is adopted in all
these curves.

O(αs3) O(αs4)

O(αs)

O(αs2)

[D. Bardin, G. Passarino, “The Standard 
Model in the Making”, Clarendon Press (1999)]
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Max Baak (CERN) 

Modified Higgs couplings 

!  Study of potential deviations of Higgs couplings from SM. 
!  BSM modeled as extension of SM through effective Lagrangian. 

•  Consider leading corrections only. 

!  Popular benchmark model: 
•  Scaling of Higgs-vector boson (κV)  

and Higgs-fermion couplings (κF)  
•  No additional loops in the  

production or decay of the Higgs,  
no invisible Higgs decays and undetectable width. 

!  Main effect on EWPO due to  
modified Higgs coupling  
to gauge bosons (κV) 

•  Involving the longitudinal d.o.f. 

!  Most BSM models: κV < 1 
•  Additional Higgses typically give positive contribution to MW. 

The ElectroWeak fit of Standard Model 36 

κV κV 

κV
2 

Roman Kogler The global electroweak fit 

Modified Higgs Couplings

Study of potential deviations of Higgs couplings from SM

‣ BSM modelled as extension of 
SM through effective Lagrangian
• Leading corrections only

‣ Benchmark model:
• Scaling of Higgs-vector boson (κV) 

and Higgs-fermion couplings (κF)
• No additional loops in the production or decay of the Higgs, 

no invisible Higgs decays and undetectable width

‣Main effect on EWPO due to modified 
Higgs coupling to gauge bosons (κV)
• Involving the longitudinal d.o.f.

‣Most BSM models: κV < 1

‣Additional Higgses typically give positive contribution to MW
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Modified Higgs couplings 

!  Study of potential deviations of Higgs couplings from SM. 
!  BSM modeled as extension of SM through effective Lagrangian. 

•  Consider leading corrections only. 

!  Popular benchmark model: 
•  Scaling of Higgs-vector boson (κV)  

and Higgs-fermion couplings (κF)  
•  No additional loops in the  

production or decay of the Higgs,  
no invisible Higgs decays and undetectable width. 

!  Main effect on EWPO due to  
modified Higgs coupling  
to gauge bosons (κV) 

•  Involving the longitudinal d.o.f. 

!  Most BSM models: κV < 1 
•  Additional Higgses typically give positive contribution to MW. 

The ElectroWeak fit of Standard Model 36 

κV κV 

κV
2 


