
The Electroweak Fit of the Standard Model with a Higgs Boson at 126 GeV

Roman Kogler (Universität Hamburg)

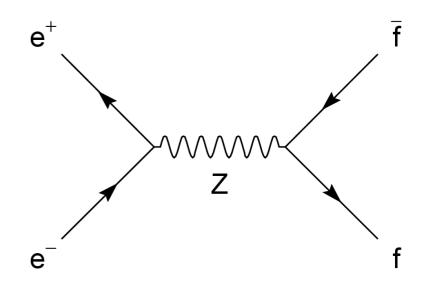
for the Gfitter group

LEXI Meeting
Hamburg, Oct 11, 2012

The Gfitter group: M. Baak (CERN), M. Göbel (Univ. Hamburg, DESY), J. Haller (Univ. Hamburg), A. Höcker (CERN), D. Kennedy (Univ. Hamburg, DESY), R. K. (Univ. Hamburg), K. Mönig (DESY), M. Schott (CERN) J. Stelzer (DESY)

Predictive Power of the SM

Tree level relations for $Z \rightarrow f \overline{f}$


$$g_{V,f}^{(0)} \equiv g_{L,f}^{(0)} + g_{R,f}^{(0)} = I_3^f - 2Q^f \sin^2 \theta_W$$

$$g_{A,f}^{(0)} \equiv g_{L,f}^{(0)} - g_{R,f}^{(0)} = I_3^f,$$

with the weak mixing angle:

$$\sin^2 \theta_W = 1 - \frac{M_W^2}{M_Z^2}$$

Electroweak unification connects the electromagnetic and the weak coupling strengths

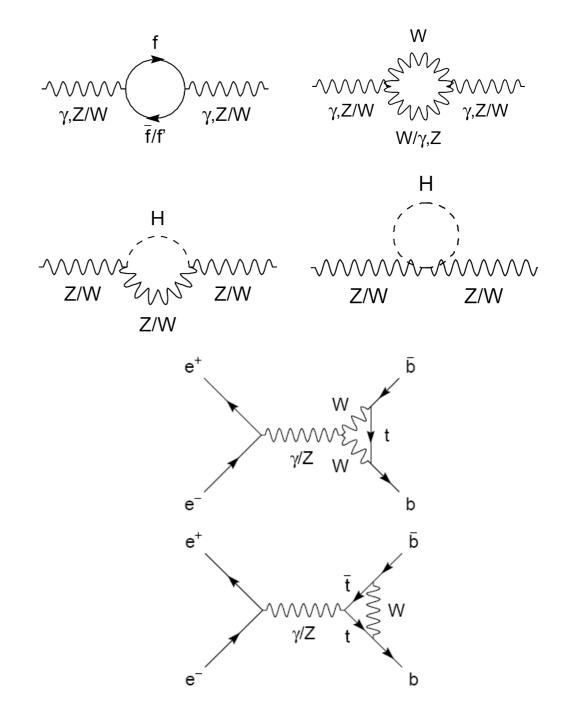
...and M_W can be expressed in terms of M_Z and G_F

$$G_F = \frac{\pi \alpha}{\sqrt{2} (M_W^{(0)})^2 \left(1 - \frac{(M_W^{(0)})^2}{M_Z^2}\right)}$$

$$M_W^2 = \frac{M_Z^2}{2} \left(1 + \sqrt{1 - \frac{\sqrt{8\pi\alpha}}{G_F M_Z^2}} \right)$$

Electroweak sector of SM is given by three free parameters, for example α , G_F and M_Z

Radiative Corrections


Modification of propagators and vertices

- ▶ Parametrisation of radiative corrections: electroweak form factors ρ , κ , Δr
- Effective couplings at the Z-pole:

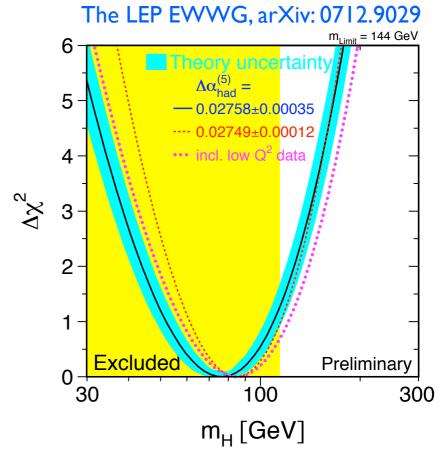
$$g_{V,f} = \sqrt{\rho_Z^f} \left(I_3^f - 2Q^f \sin^2 \theta_{\text{eff}}^f \right)$$
$$g_{A,f} = \sqrt{\rho_Z^f} I_3^f$$
$$\sin^2 \theta_{\text{eff}}^f = \kappa_Z^f \sin^2 \theta_W$$

Mass of the W boson:

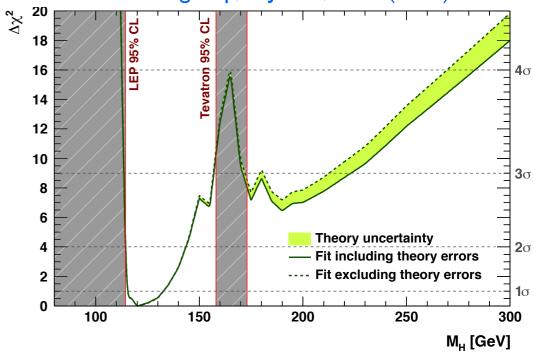
$$M_W^2 = \frac{M_Z^2}{2} \left(1 + \sqrt{1 - \frac{\sqrt{8\pi\alpha(1 - \Delta r)}}{G_F M_Z^2}} \right)$$

 \triangleright ρ , κ , Δr depend nearly quadratically on m_t and logarithmically on M_H

Precision tests and constraints of the SM


Electroweak Fits - History

Electroweak Fits to precision data have a long history


- Huge amount of work to precisely understand loop corrections in the SM
- Precise SM predictions and measurements

Electroweak Fits routinely performed by many groups

- ▶ D. Bardin et al. (ZFITTER), G. Passarino et al. (TOPAZO), M. Grünewald et al. (LEP EWWG), J. Erler (GAPP),
 M. Baak et al. (Gfitter),...
- Many important results obtained, e.g. constraints on the mass of the Higgs boson

The Gfitter Project

A Generic Fitter Project for HEP **Model Testing**

- ▶ Modular framework for involved fitting problems in the LHC era
- Coherent treatment of statistical, systematic and theoretical uncertainties together with possible correlations
- Different packages/plug-ins possible

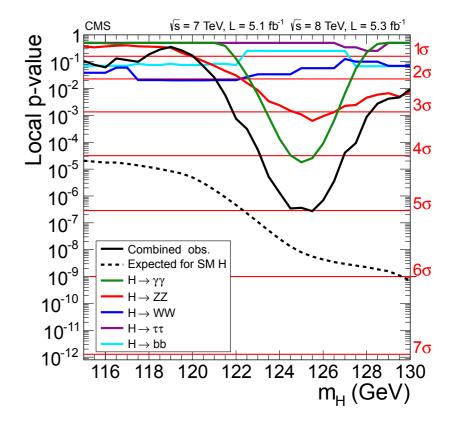
fitter SM A Gfitter package for the global electroweak fit

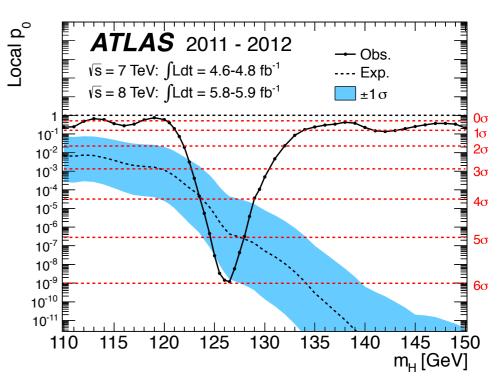
- Complete implementation of SM predictions of precision observables
- ▶ State of the art calculations used, in particular:
 - Full calculation of the QCD Adler function (massless and massive) terms) in N³LO [P.A. Baikov et al., Phys. Rev. Lett. 101 (2008) 012022, Phys. Rev. Lett. 108, 222003 (2012)]
 - Full two-loop correction (NNLO) to R⁰_b [A. Freitas et al., JHEP 1208, 050 (2012)]

www.cern.ch/gfitter

This Year's Discovery

ATLAS and CMS have reported the discovery of a new boson


- The cross section and branching ratios are compatible with the SM Higgs boson
- Measured mass:


ATLAS: $126.0 \pm 0.4 \text{ (stat)} \pm 0.4 \text{ (sys)} \text{ GeV}$

CMS: $125.3 \pm 0.4 \text{ (stat)} \pm 0.4 \text{ (sys)} \text{ GeV}$

- Assume that it is the Higgs boson, then $M_H = 125.7 \pm 0.4 \text{ GeV}$
- ▶ Difference between fully uncorrelated and fully correlated systematic uncertainties: uncertainty on M_H 0.4 → 0.5 GeV

The SM is for the first time fully overconstrained → test its consistency

Experimental Input

Observables:

- ➤ Z-pole observables: LEP/SLD results [ADLO+SLD, Phys. Rept. 427, 257 (2006)]
- ▶ M_W and Γ_W: LEP/Tevatron [arXiv:1204:0042]
- ► m_t:Tevatron [arXiv:1207:1069]
- Arr $\Delta \alpha_{had}^{(5)}(M_Z)$ [M. Davier et al., EPJC 71, 1515 (2011)]
- ► m_c, m_b: world averages [PDG, J. Phys. G33, I (2006)]
- ► M_H: LHC [arXiv:1207.7214, arXiv:1207.7235]

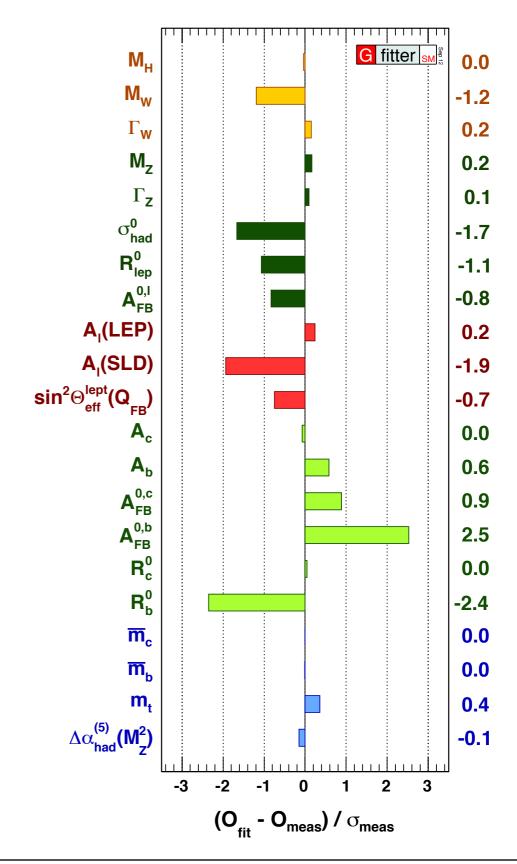
Free fit parameters:

- $M_Z, M_H, \Delta \alpha_{had}^{(5)}(M_Z), \alpha_s(M_Z), \\ \overline{m_c}, \overline{m_b}, m_t$
- Scale parameters for theoretical uncertainties ΔM_W (4 MeV), $\Delta \sin^2 \theta_{eff}$ (4.7·10⁻⁵)

		_
M_H [GeV] ^(\circ)	125.7 ± 0.4	LHC
M_W [GeV]	80.385 ± 0.015	II
Γ_W [GeV]	2.085 ± 0.042	Tevatron
M_Z [GeV]	91.1875 ± 0.0021	
Γ_Z [GeV]	2.4952 ± 0.0023	
$\sigma_{ m had}^0$ [nb]	41.540 ± 0.037	LEP
R_ℓ^0	20.767 ± 0.025	
$A_{ m FB}^{0,\ell}$	0.0171 ± 0.0010	
$A_\ell^-(\star)$	0.1499 ± 0.0018	SLC
$\sin^2\!\! heta_{ m eff}^\ell(Q_{ m FB})$	0.2324 ± 0.0012	1 323
A_c	0.670 ± 0.027	
A_b	0.923 ± 0.020	SLC
$A_{ m FB}^{0,c}$	0.0707 ± 0.0035	
$A_{ m FB}^{0,b}$	0.0992 ± 0.0016	LED
R_c^0	0.1721 ± 0.0030	II LEP
R_b^0	0.21629 ± 0.00066	II
\overline{m}_c [GeV]	$1.27^{+0.07}_{-0.11}$	
\overline{m}_b [GeV]	$4.20^{+0.17}_{-0.07}$	
m_t [GeV]	173.18 ± 0.94	Tevatron
()		

 2757 ± 10

 $\Delta \alpha_{\rm had}^{(5)}(M_Z^2) \stackrel{(\triangle \nabla)}{=}$

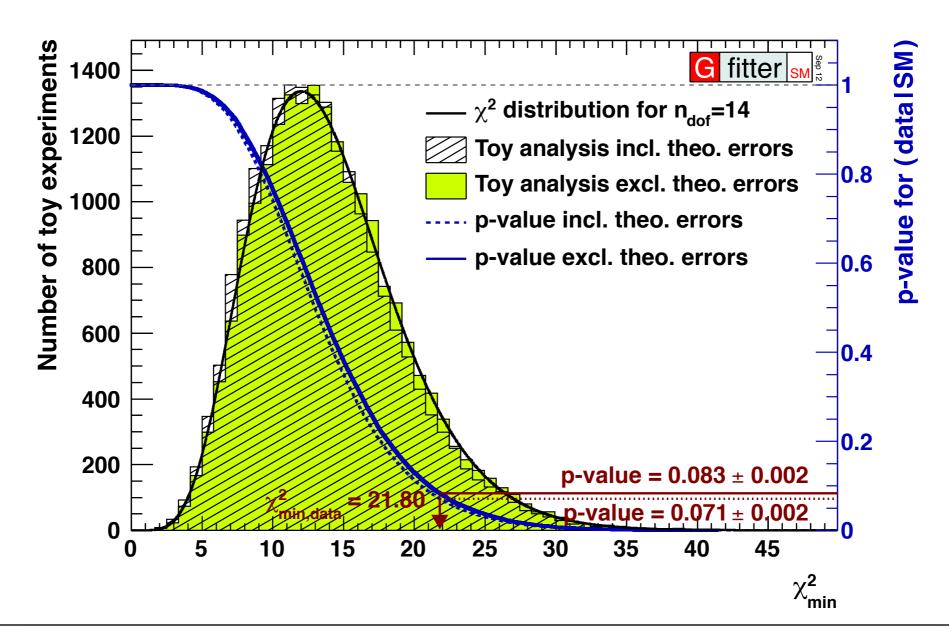

Global Fit: Results

$$\chi^{2}_{min}/ndf = 21.8/14 \rightarrow p-value = 0.08$$

- Iarge value of χ^2_{min} not due to inclusion of M_H measurement
- without M_H measurement: χ^2_{min} /ndf = 20.3/13 \rightarrow naive p-value = 0.09

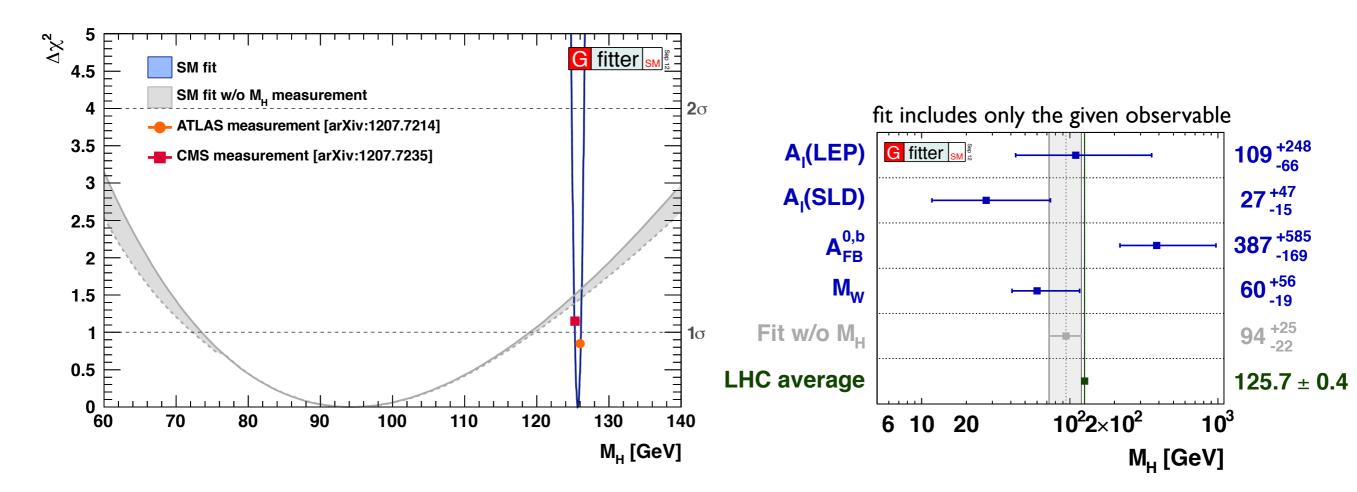
Pull values after the fit

- ightharpoonup Pull defined as $P = \frac{O_{\mathrm{fit}} O_{\mathrm{meas}}}{\sigma_{\mathrm{meas}}}$
- No pull value exceeds deviations of more than 3σ (good consistency of SM)
- ▶ Small values for M_H, A_c, R⁰_c, m_c and m_b indicate that their input accuracies exceed the fit requirements
- Largest deviations in the b-sector: $A^{0,b}_{FB}$ and R^{0}_{b} with 2.5 σ and -2.4 σ



Goodness of Fit

Toy analysis with 20000 toy experiments

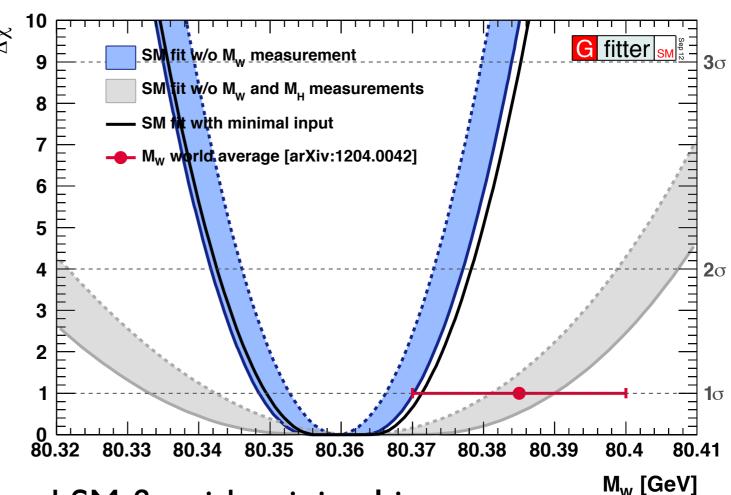

- p-value: probability for getting $\chi^2_{min, toy}$ larger than χ^2_{min} from data
- p-value: probability for wrongly rejecting the SM: 0.07 ± 0.01 (theo)

Global Fit: Results

Scan of the $\Delta \chi^2$ profile versus M_H

- blue line: full SM fit
- grey band: fit without M_H measurement
- fit without M_H input gives $M_H = 94^{+25}_{-22}$ GeV
- > consistent within 1.3σ with measurement

Determination of M_H removing all sensitive observables except the given one:


Tension (2.5 σ) between A^{0,b}_{FB}, A_{lep}(SLD) and M_W visible

Indirect Determination: W Mass

Scan of the $\Delta \chi^2$ profile versus M_W

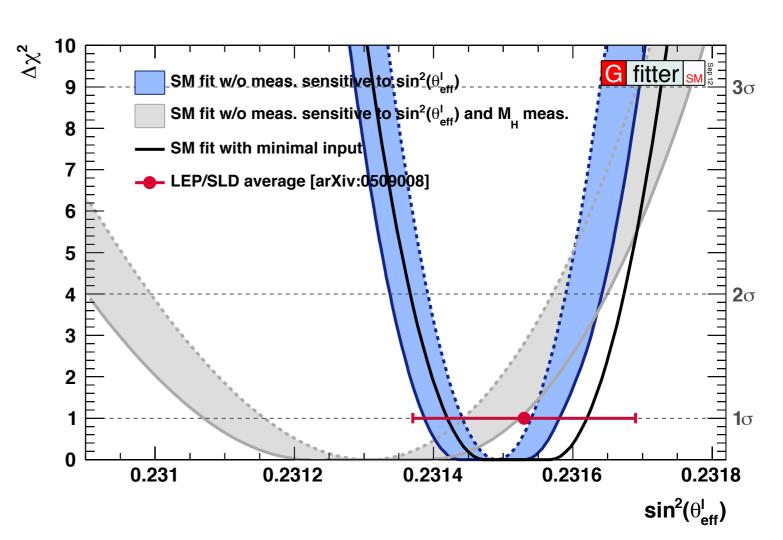
- M_H measurement allows for precise constraint of M_W
- ▶ also shown: SM fit with minimal input: M_Z , G_F , $\Delta\alpha_{had}^{(5)}(M_Z)$, $\alpha_s(M_Z)$, M_H , m_c , m_b , m_t

- Consistency between total fit and SM fit with minimal input
- ▶ Fit result for the indirect determination of M_W:

$$M_W = 80.3593 \pm 0.0056_{m_t} \pm 0.0026_{M_Z} \pm 0.0018_{\Delta\alpha_{\text{had}}}$$

 $\pm 0.0017_{\alpha_S} \pm 0.0002_{M_H} \pm 0.0040_{\text{theo}},$
 $= 80.359 \pm 0.011_{\text{tot}},$

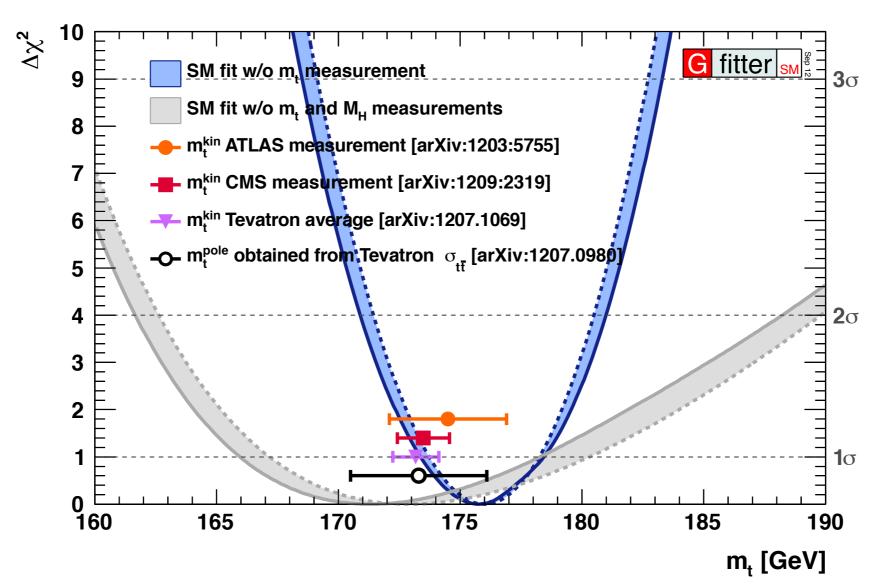
More precise than the direct measurements



The Effective Weak Mixing

Scan of the $\Delta \chi^2$ profile versus $\sin^2 \theta^I_{eff}$

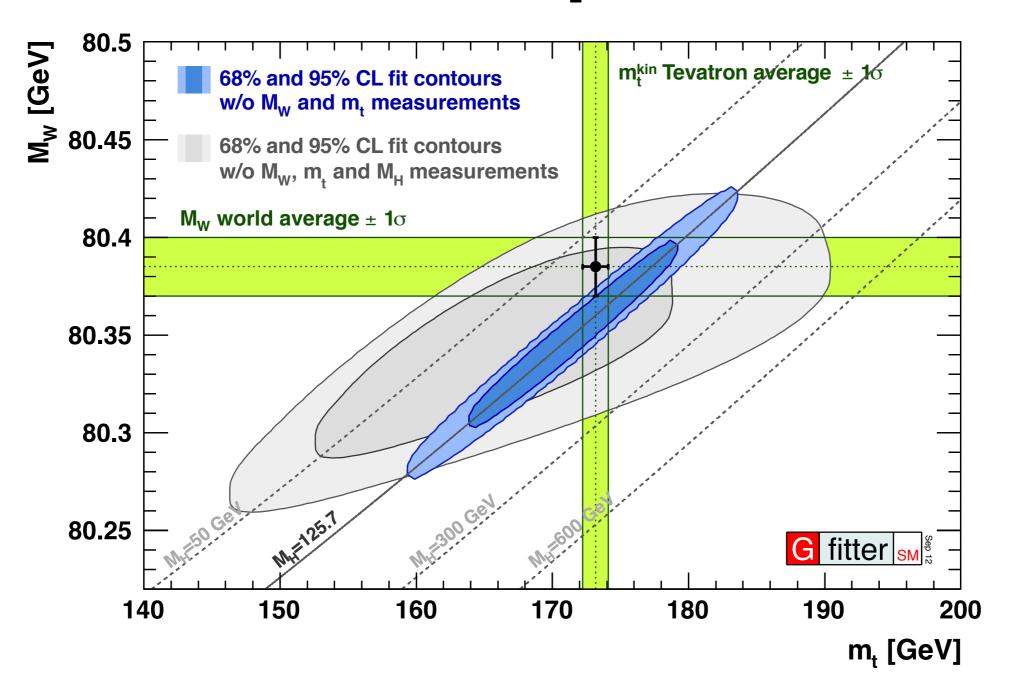
- all observables sensitive to sin²θ_{eff} removed from fit
- M_H measurement allows for precise constraint of $\sin^2 \theta_{eff}^I$
- also shown: SM fit with minimal input


$$\begin{split} \sin^2\!\theta_{\rm eff}^\ell &= 0.231496 \pm 0.000030_{m_t} \pm 0.000015_{M_Z} \pm 0.0000035_{\Delta\alpha_{\rm had}} \\ &\quad \pm 0.000010_{\alpha_S} \pm 0.000002_{M_H} \pm 0.0000047_{\rm theo} \,, \\ &= 0.23150 \pm 0.00010_{\rm tot} \,\,, \end{split}$$

More precise than the direct determination from LEP/SLD measurements

Indirect Determination: Top Mass

Scan of the $\Delta \chi^2$ profile versus m_t


- consistency with direct measurements
- ▶ M_H measurement allows for better constraint of m_t

$$m_t = 175.8^{+2.7}_{-2.4} \,\text{GeV}$$
 (Tevatron average: $m_t = 173.2 \pm 0.9 \,\text{GeV}$)

W and Top Mass

68% and 95% CL contours of fit without using Mw, mt (and MH)

▶ Impressive consistency of the SM

Beyond the SM

At low energies, BSM physics appears dominantly through vacuum polarisation

Aka, oblique corrections

$$\frac{\mu}{A} \underbrace{\hspace{1cm} V}_{B} = i \Pi^{\mu \nu}_{AB=\{W,Z,\gamma\}}(q)$$

• Direct corrections (vertex, box, brems-strahlung) generally suppressed by $m_{\rm f}/\Lambda$

Oblique corrections reabsorbed into electroweak parameters $\Delta \rho$, $\Delta \kappa$, Δr

Electroweak fit sensitive to BSM physics through oblique corrections

In direct competition
 with Higgs loop
 corrections

 Oblique corrections from New Physics described through STU parameters

[Peskin-Takeuchi, Phys. Rev. D46, 381 (1992)]

$$O_{\text{meas}} = O_{\text{SM,ref}}(M_H, m_t) + c_S S + c_T T + c_U U$$

S: (S+U) New Physics contributions to neutral (charged) currents

T: Difference between neutral and charged current processes – sensitive to weak isospin violation

U: Constrained by M_W and Γ_W . Usually very small in NP models (often: U=0)

Also considered: correction to Z → bb
 coupling, and extended parameters (VWX)
 [Burgess et al., PLB 326, 276 (1994), PRD 49, 6115 (1994)]

Constraints on S, T and U

S, T, U obtained by fit to EW observables

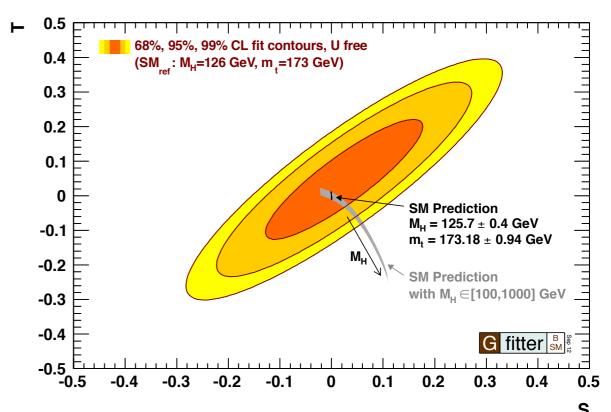
▶ SM reference chosen to be

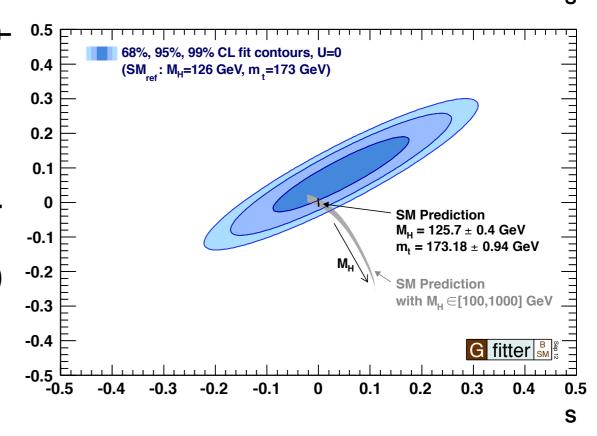
$$M_{H,ref} = 126 \text{ GeV}$$

$$m_{t,ref} = 173 \text{ GeV}$$

- ▶ this defines (0, 0, 0)
- ▶ S,T depend logarithmically on M_H
- Fit result:

$$S = 0.03 \pm 0.10$$


$$T = 0.05 \pm 0.12$$


$$U = 0.03 \pm 0.10$$

with large correlation between S and T

▶ Stronger constraints from fit with U=0

No indication of new physics

Summary

Assuming the newly discovered boson is the SM Higgs

- all fundamental parameters of the SM are known
- possibility to overconstrain the SM at the electroweak scale
- ▶ global EW fit has been redone, with a p-value of 0.07
- ▶ small p-value comes mostly from R⁰_b and A^{0,b}_{FB}

Knowledge of M_H allows for precision determinations of

- W mass, top mass, $\sin^2\theta_{eff}^I$
- detailed information in arXiv:1209.2716 and recent updates on www.cern.ch/gfitter

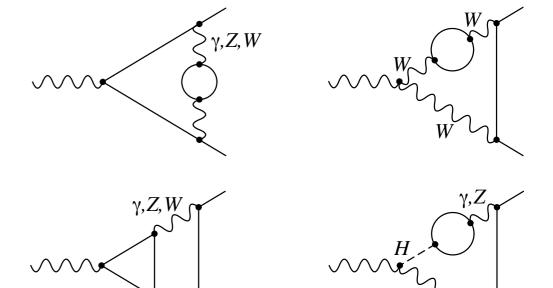
EW Fit allows to constrain many BSM models

- no signs of new physics from oblique parameters
- stay tuned for more results

Additional Material

Parameter	Input value	Free in fit	Fit result incl. M_H	Fit result not incl. M_H	Fit result incl. M_H but not exp. input in row
$M_H [\text{GeV}]^{(\circ)}$	125.7 ± 0.4	yes	125.7 ± 0.4	94^{+25}_{-22}	94^{+25}_{-22}
M_W [GeV]	80.385 ± 0.015	_	80.367 ± 0.007	80.380 ± 0.012	80.359 ± 0.011
Γ_W [GeV]	2.085 ± 0.042	_	2.091 ± 0.001	2.092 ± 0.001	2.091 ± 0.001
M_Z [GeV]	91.1875 ± 0.0021	yes	91.1878 ± 0.0021	91.1874 ± 0.0021	91.1983 ± 0.0116
Γ_Z [GeV]	2.4952 ± 0.0023	_	2.4954 ± 0.0014	2.4958 ± 0.0015	2.4951 ± 0.0017
$\sigma_{ m had}^0$ [nb]	41.540 ± 0.037	_	41.479 ± 0.014	41.478 ± 0.014	41.470 ± 0.015
R_ℓ^0	20.767 ± 0.025	_	20.740 ± 0.017	20.743 ± 0.018	20.716 ± 0.026
$A_{ m FB}^{0,\ell}$	0.0171 ± 0.0010	_	0.01627 ± 0.0002	0.01637 ± 0.0002	0.01624 ± 0.0002
A_{ℓ} (*)	0.1499 ± 0.0018	_	$0.1473^{+0.0006}_{-0.0008}$	0.1477 ± 0.0009	$0.1468 \pm 0.0005^{(\dagger)}$
$\sin^2\!\! heta_{ m eff}^\ell(Q_{ m FB})$	0.2324 ± 0.0012	_	$0.23148^{+0.00011}_{-0.00007}$	$0.23143^{+0.00010}_{-0.00012}$	0.23150 ± 0.00009
A_c	0.670 ± 0.027	_	$0.6680^{+0.00025}_{-0.00038}$	$0.6682^{+0.00042}_{-0.00035}$	0.6680 ± 0.00031
A_b	0.923 ± 0.020	_	$0.93464^{+0.00004}_{-0.00007}$	0.93468 ± 0.00008	0.93463 ± 0.00006
$A_{ m FB}^{0,c}$	0.0707 ± 0.0035	_	$0.0739^{+0.0003}_{-0.0005}$	0.0740 ± 0.0005	0.0738 ± 0.0004
$A_{ m FB}^{0,b}$	0.0992 ± 0.0016	_	$0.1032^{+0.0004}_{-0.0006}$	0.1036 ± 0.0007	0.1034 ± 0.0004
R_c^0	0.1721 ± 0.0030	_	0.17223 ± 0.00006	0.17223 ± 0.00006	0.17223 ± 0.00006
R_b^0	0.21629 ± 0.00066	_	0.21474 ± 0.00003	0.21475 ± 0.00003	0.21473 ± 0.00003
\overline{m}_c [GeV]	$1.27^{+0.07}_{-0.11}$	yes	$1.27^{+0.07}_{-0.11}$	$1.27^{+0.07}_{-0.11}$	_
\overline{m}_b [GeV]	$4.20^{+0.17}_{-0.07}$	yes	$4.20^{+0.17}_{-0.07}$	$4.20^{+0.17}_{-0.07}$	_
m_t [GeV]	173.18 ± 0.94	yes	173.52 ± 0.88	173.14 ± 0.93	$175.8^{+2.7}_{-2.4}$
$\Delta \alpha_{\mathrm{had}}^{(5)}(M_Z^2) \stackrel{(\triangle \nabla)}{}$	2757 ± 10	yes	2755 ± 11	2757 ± 11	2716^{+49}_{-43}
$\alpha_{\scriptscriptstyle S}(M_Z^2)$	_	yes	0.1191 ± 0.0028	0.1192 ± 0.0028	0.1191 ± 0.0028
$\delta_{ m th} M_W \ [{ m MeV}]$	$[-4,4]_{\mathrm{theo}}$	yes	4	4	
$\frac{\delta_{\rm th}\sin^2\!\!\theta_{\rm eff}^{\ell}}{}^{(\triangle)}$	$[-4.7, 4.7]_{\rm theo}$	yes	-1.4	4.7	

New Calculation of R⁰_b


Full two-loop calculation of Z→bb

► The branching ratio R^0_b :

partial decay width of $Z \rightarrow b\bar{b}$ and $Z \rightarrow q\bar{q}$

$$R_b \equiv \frac{\Gamma_b}{\Gamma_{\text{had}}} = \frac{\Gamma_b}{\Gamma_d + \Gamma_u + \Gamma_s + \Gamma_c + \Gamma_b}$$

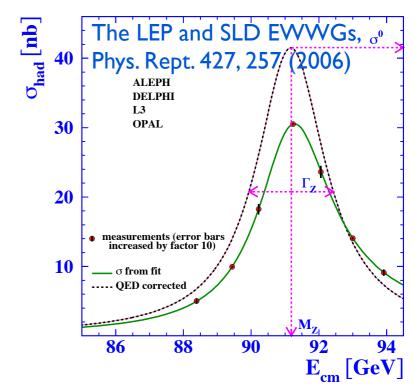
Two-loop corrections are rather large compared to the one-loop results [A. Freitas et al., JHEP 1208, 050 (2012)]

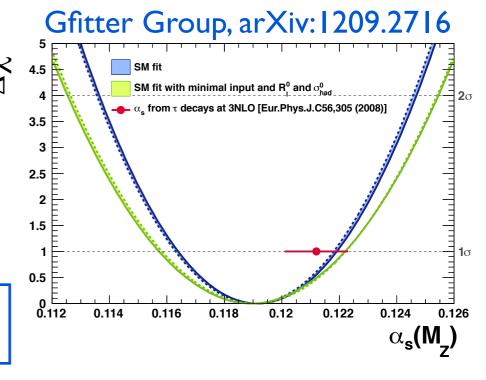
fermionic EW two-loop corrections to the vertex form factors

	I-loop EW and QCD correction to FSR	2-loop EW correction	2-loop EW and 2+3-loop QCD correction to FSR	I+2-loop QCD correction to gauge boson selfenergies
$M_{ m H}$ [GeV]	$\mathcal{O}(\alpha) + \text{FSR}_{1-\text{loop}}$ $[10^{-3}]$	$ \begin{array}{c c} \mathcal{O}(\alpha_{\text{ferm}}^2) \\ [10^{-4}] \end{array} $	$\frac{\mathcal{O}(\alpha_{\text{ferm}}^2) + \text{FSR}_{>1-\text{loop}}}{[10^{-4}]}$	$ \begin{array}{c c} \mathcal{O}(\alpha\alpha_{\rm s}, \alpha\alpha_{\rm s}^2) \\ [10^{-4}] \end{array} $
100	-3.632	-6.569	-9.333	-0.404
200	-3.651	-6.573	-9.332	-0.404
400	-3.675	-6.581	-9.331	-0.404

$\alpha_s(M_z)$ from $Z\rightarrow$ hadrons

- ▶ Fit of electroweak precision observables
- ▶ Input mostly from LEP data from the Z-peak
- Determination of α_s : most sensitivity through total hadronic cross section at the Z-pole and the partial leptonic width


$$\sigma_{\rm had}^0 \equiv \frac{12\pi}{m_{\rm Z}^2} \frac{\Gamma_{\rm ee} \Gamma_{\rm had}}{\Gamma_{\rm Z}^2} \qquad R_\ell^0 \equiv \Gamma_{\rm had} / \Gamma_{\ell\ell}$$


obtained from the four LEP experiments, 17 million Z decays

Complete $O(\alpha_s^4)$ calculation available:

[P. Baikov et al., Phys. Rev. Lett. 108, 222003 (2012)]

$$\alpha_s(M_Z) = 0.1191 \pm 0.0028 \text{ (exp.) } \pm 0.0001 \text{ (theo.)}$$

Improvement in precision only with ILC/GigaZ expected

