News from the electroweak SM Fit and Constraints of SM Extensions

SM4 and Single-top Workshop Leinsweiler

Martin Goebel (DESY) for the Gfitter group

27th March 2012

Outline

- News from the electroweak SM Fit (e.g. Higgs searches, M_W , α_s)
- Comparison of indirect and direct determination of Higgs mass
- Tests of the electroweak SM
- Results for the STU parameters
- Parameter constraints for fourth generation and littlest Higgs model
- Summary

Experimental Measurements

	Z-pole observables including their correlations: LEP/SLD experiments		Parameter	Input value
	[ADLO+SLD, Phys. Rept. 427, 257 (2006)]		M_Z [GeV]	91.1875 ± 0.0021
	new W mass measurements from D0 and CDF		Γ_Z [GeV]	2.4952 ± 0.0023
		品	$\sigma_{ m had}^0$ [nb]	41.540 ± 0.037
	combined with LEP result: $M_W = 80.385 \pm 0.015$ GeV		R^0_ℓ	20.767 ± 0.025
	[ADLO, hep-ex/0612034][D0,arXiv:1203.0293][CDF, arXiv:1203.0275][LEPEWWG]		$A_{ m FB}^{0,\ell}$	0.0171 ± 0.0010
_			$A_\ell \ ^{(\star)}$	0.1499 ± 0.0018
	W: LEP/Tevatron ADLO, hep-ex/0612034][CDF&D0, arXiv:0908.1374]	Ľ	A_c	0.670 ± 0.027
		တ	A_b	0.923 ± 0.020
	$\overline{m}_{c}, \overline{m}_{b}$: world averages	<u> </u>	$A_{ m FB}^{0,c}$	0.0707 ± 0.0035
	[PDG, J.Phys.G G37 (2010)]		$A_{ m FB}^{0,b}$	0.0992 ± 0.0016
	[1D0, J.11]ys.0 037 (2010)]		R_c^0	0.1721 ± 0.0030
	m _t : Tevatron using 5.8 fb ⁻¹ [D0&CDF, arXiv:1107.5255]		R_b^0	0.21629 ± 0.00066
			$\sin^2 \theta_{\rm eff}^{\ell}(Q_{\rm FB})$	0.2324 ± 0.0012
	α_{had} ⁽⁵⁾ (M ₇ ²): including α_{s} dependency (rescaling)		M_H [GeV] ^(o)	_
	[Davier et al. EPJ C71 (2011)]		M_W [GeV]	80.385 ± 0.015
	direct Higgs mass exclusions (at 95% CL):		Γ_W [GeV]	2.085 ± 0.042
_	 LEP: M_H > 114 GeV [ADLO: Phys. Lett. B565, 61 (2003)] Tevatron: 100 - 119 GeV and 141 - 184 GeV 		\overline{m}_c [GeV]	$1.27^{+0.07}_{-0.11}$
			\overline{m}_{b} [GeV]	$4.20^{+0.17}_{-0.07}$
			m_b [GeV] m_t [GeV]	$4.20_{-0.07}$ 173.3 ± 1.1
			$\Delta \alpha_{\rm had}^{(5)} (M_Z^2)^{(\dagger \Delta)}$	115.5 ± 1.1 2757 ± 10
	[TEVNPH: arXiv:1203.3782]		$\alpha_{s}(M_{Z}^{2})$	-
	ATLAS: 110 – 117.5 GeV, 118.5 – 122.5 GeV, and 129 – 539 GeV		$\delta_{\rm th} M_W$ [MeV]	[4 4] .
	 AILAS: 110 – 117.5 GeV, 118.5 – 122.5 GeV, and 129 – 539 GeV [ATLAS-CONF-2012-019] 		$\delta_{\rm th} M_W [MeV]$ $\delta_{\rm th} \sin^2 \theta_{\rm eff}^{\ell} (\dagger)$	$[-4, 4]_{\text{theo}}$
	□ CMS: 127.5 – 600 GeV		$\delta_{\rm th} \sin \theta_{\rm eff}^{f} (\dagger)$	$[-4.7, 4.7]_{\text{theo}}$
	CMS: 127.5 – 600 GeV [CMS-PAS-HIG-12-008]			$[-2, 2]_{\text{theo}}$
	[UND-1 AD-1110-12-000]		$\delta_{ m th}\kappa_Z^f~^{(\dagger)}$	$[-2, 2]_{\rm theo}$

LHC+Tevatron: excess at 125 GeV

Martin Goebel - Update of the electroweak SM Fit and Constraints of SM Extensions

[†] in units of 10⁻⁵

Experimental Measurements

 Z-pole observables including their correlations: LEP/SLD experiments [ADLO+SLD, Phys. Rept. 427, 257 (2006)] 	Parameter M _Z [GeV]	Input value 91.1875 ± 0.0021
[ADLO+SLD, Phys. Rept. 427, 257 (2006)]	Γ_Z [GeV]	91.1875 ± 0.0021 2.4952 ± 0.0023
new W mass measurements from D0 and CDF	$\sigma_{\rm had}^0$ [nb]	41.540 ± 0.037
combined with LEP result: $M_W = 80.385 \pm 0.015 \text{ GeV}$	R^0_{ℓ}	20.767 ± 0.025
[ADLO, hep-ex/0612034][D0,arXiv:1203.0293][CDF, arXiv:1203.0275][LEPEWWG]	$A_{ m FB}^{0,\ell}$	0.0171 ± 0.0010
	A_{ℓ}^{FB}	0.1499 ± 0.0018
• Γ_{W} : LEP/Tevatron	A_c	0.670 ± 0.027
[ADLO, hep-ex/0612034][CDF&D0, arXiv:0908.1374]	A_b	0.923 ± 0.020
• $\overline{m}_{c}, \overline{m}_{b}$: world averages	$A_{ m FB}^{0,c}$	0.0707 ± 0.0035
[PDG, J.Phys.G G37 (2010)]	$A_{ m FB}^{0,b}$	0.0992 ± 0.0016
	R_c^0	0.1721 ± 0.0030
m _t : Tevatron using 5.8 fb ⁻¹	R_b^0	0.21629 ± 0.00066
[D0&CDF, arXiv:1107.5255]	$\sin^2 \theta_{\rm eff}^{\ell}(Q_{\rm FB})$	0.2324 ± 0.0012
• $\Delta \alpha_{had}^{(5)}(M_Z^2)$: including α_S dependency (rescaling)	M_H [GeV] ^(o)	-
	M_W [GeV]	80.385 ± 0.015
direct Higgs mass exclusions (at 95% CL):	Γ_W [GeV]	2.085 ± 0.042
	\overline{m}_c [GeV]	$1.27^{+0.07}_{-0.11}$
	\overline{m}_b [GeV]	$4.20^{+0.17}_{-0.07}$
	$m_t [\text{GeV}]$	173.3 ± 1.1
Still allowed regions:	$\Delta \alpha_{\rm had}^{(5)}(M_Z^2) ^{(\dagger \triangle)}$	2757 ± 10
117.5 GeV < M _н < 118.5 GeV	$\alpha_s(M_Z^2)$	-
122.5 GeV < M _H < 127.5 GeV	$\delta_{ m th} M_W$ [MeV]	$[-4,4]_{\mathrm{theo}}$
$122.5 \text{ GeV} < 101_{\text{H}} < 127.5 \text{ GeV}$	$\delta_{\rm th} \sin^2 \theta_{\rm eff}^{\ell} ^{(\dagger)}$	$[-4.7, 4.7]_{\rm theo}$
	$\delta_{ m th} ho_Z^f$ (†)	$[-2, 2]_{\rm theo}$
	$\delta_{ m th}\kappa^f_Z$ (†)	$[-2,2]_{\rm theo}$

LHC+Tevatron: excess at 125 GeV

Martin Goebel - Update of the electroweak SM Fit and Constraints of SM Extensions

[†] in units of 10⁻⁵

Theoretical Input

- electroweak precision observables expressed as functions of the free SM parameters: M_Z , M_H , m_t , $\Delta \alpha_{had}^{(5)}(M_Z^2)$, $\alpha_S(M_Z^2)$, \overline{m}_c , \overline{m}_b
- most important predictions for constraining the Higgs mass
 - M_W and sin²θ^f_{eff}: full two-loop + leading beyond-two-loop correction [M. Awramik et al., Phys. Rev D69, 053006 (2004)][M. Awramik et al., JHEP 11, 048 (2006), M. Awramik et al., Nucl.Phys.B813:174-187 (2009)]
 - theoretical uncertainties (due to *eg.* truncation of higher QCD orders): $M_W (\delta M_W = 4 \text{ MeV}) \text{ and } \sin^2 \theta^f_{eff} (\delta \sin^2 \theta^l_{eff} = 4.7 \cdot 10^{-5})$
 - $sin^2\theta^{f}_{eff}$ defines asymmetry parameter and forward-backward asymmetry

partial Z widths (or ratio of them) important for determination of α_s

Z couplings implemented by parametrization (one-loop level and partly at two-loop level for $\mathcal{O}(\alpha \alpha_s)$)

[Hagiwara et al., arXiv:1104.1769)]

correction applied for large Higgs masses (M_H>500 GeV) to account for difference between ZFitter and parametrization

[Bardin et al, CPC 133,299(2001)][Arbuzov et al., CPC 174,728(2006)]

radiator functions describe final QCD and QED radiation,

[Hagiwara et al, Z.Phys. C64, 559 (1994), Bardin et al., The standard model in the making (1999), Bardin et al., CPC. 133, 229 (2001)] including N³IO to hadronic Z decay (new!!!)

[P.A. Baikov et al., Phys. Rev. Lett. 101 (2008) 012022, P.A. Baikov et al., arXiv:1201.5804 [hep-ph]]

• width of W boson not crucial for fit due to large experimental uncertainty [Hagiwara et al., arXiv:1104.1769)]

Determination of Strong Coupling

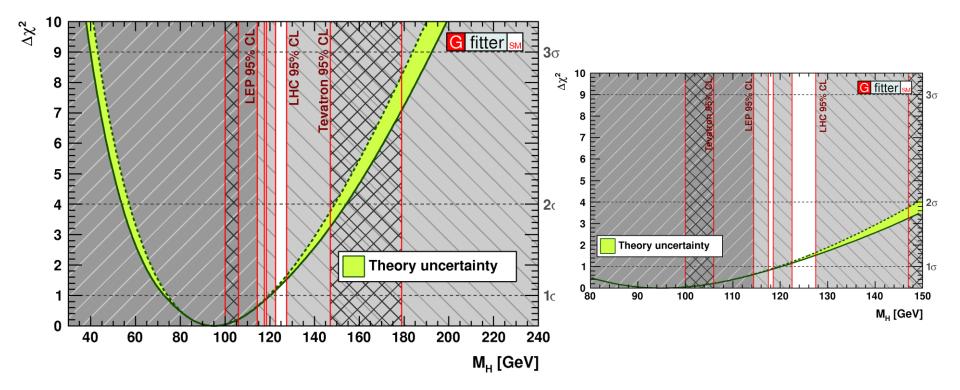
R_I (ratio of hadronic and leptonic Z width) most sensitive to α_s N³LO determination of α_s :

 $\alpha_{\rm s}({\rm M_Z}^2) = 0.1192 \pm 0.0028$

± 0.0001

- first error experimental
- second error theoretical

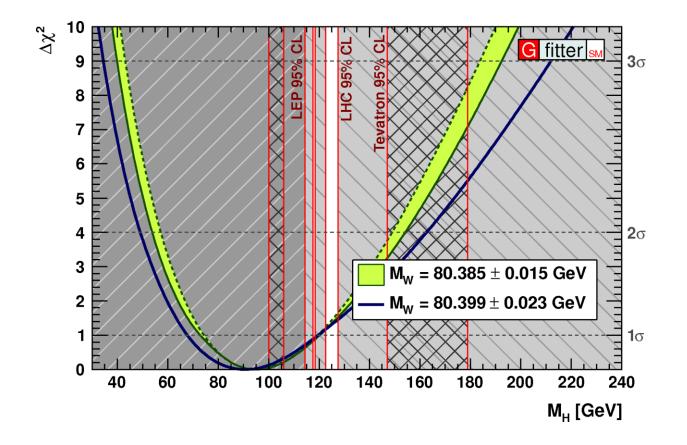
[incl. variation of renorm. scale from $M_Z/2$ to $2M_Z$ and massless terms of order/beyond $\alpha_S{}^5$ and massive terms of order/beyond $\alpha_S{}^4$]


• excellent agreement with N³LO result from hadronic τ decays [M. Davier et al., arXiv:0803.0979]

 $\alpha_{\rm s}({\rm M_Z}^2) = 0.1212 \pm 0.0005_{\rm exp}$ $\pm 0.0008_{\rm theo} \pm 0.0005_{\rm evol}$

good test of asymptotic freedom property of QCD

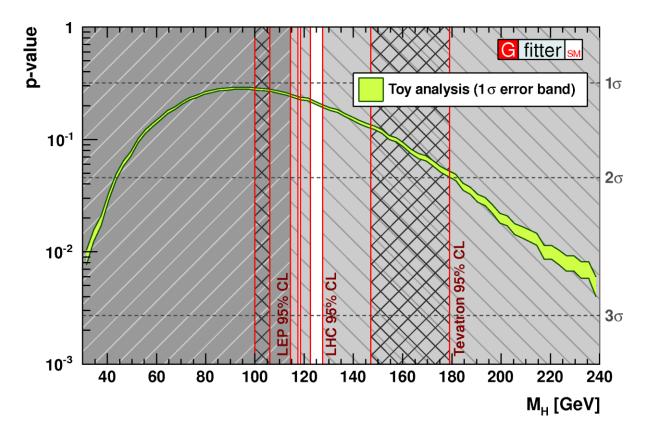
Higgs Mass Constraints



value at minimum ±1σ:

$$M_{\rm H} = 95^{+25}_{-22} \text{ GeV}$$

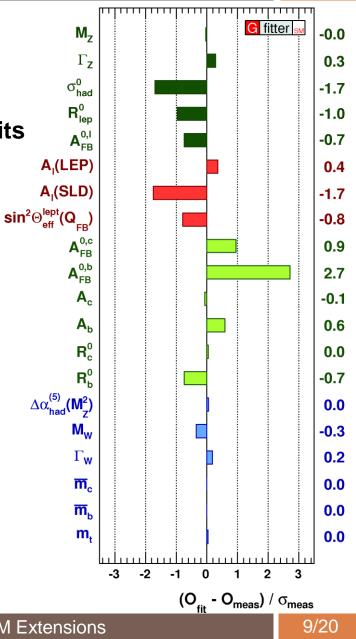
- 95% CL upper bound 152 GeV
- 99% CL upper bound 176 GeV
- direct searches and indirect determination still in agreement
- in particular indirect result in agreement with Higgs boson at 125 GeV


Improvement from new W mass

new W mass → better 95% and 99% CL upper limits → central value shifted to larger Higgs masses

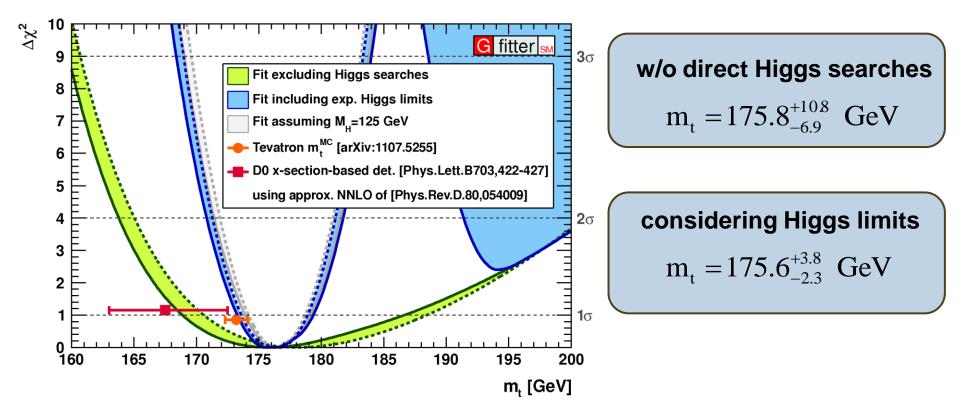
p-Value versus Higgs Mass

- p-value: probability for wrongly rejecting the SM (probability for getting a $\chi^2_{min,toy}$ larger than the $\chi^2_{min,data}$ from data)
- p-value for fixed Higgs masses determined by using MC toy analysis
- allowed Higgs mass region \rightarrow reasonable p-value (~20%)

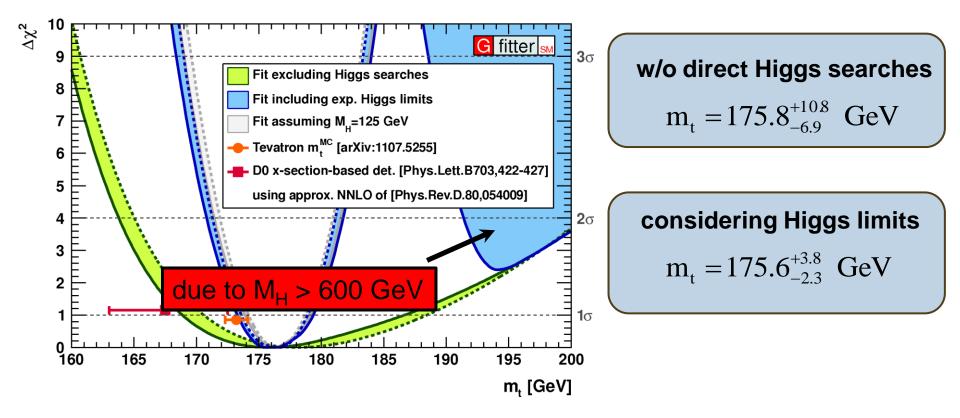


Goodness-of-Fit

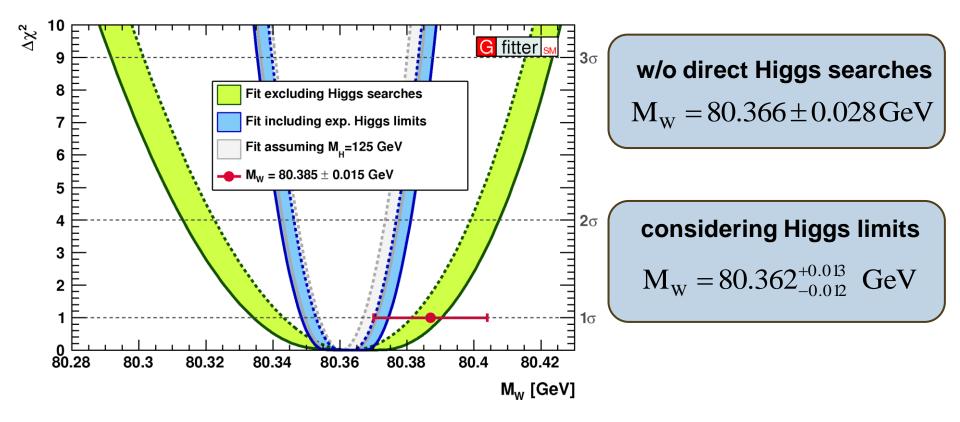
pull-values for the fit considering direct Higgs limits (Higgs mass take only values in allowed range)


- forward-backward asymmetry of bottom quarks \rightarrow largest contribution to χ^2
- no value exceeds 3σ
- small contributions from M_Z , $\Delta \alpha_{had}^{(5)}$, charm and bottom mass indicate that their input accuracies exceed fit requirements

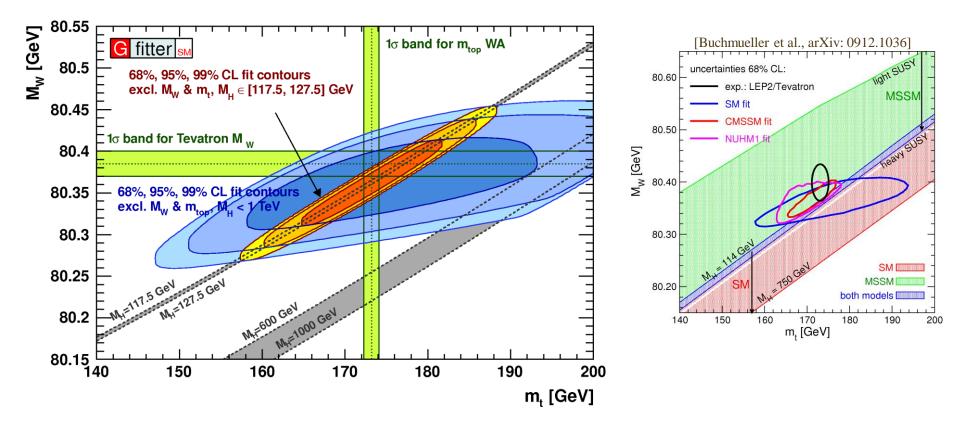
 \Rightarrow no significant requirement for new physics


Martin Goebel - Update of the electroweak SM Fit and Constraints of SM Extensions

Determination of Top Mass

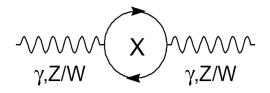

- indirect determination of top mass, *ie.* top mass measurement not included in the fit
- in agreement with direct Tevatron measurement (and D0 determination from top-pair cross-section [D0, Phys.Rev.D80,054009])

Determination of Top Mass


- indirect determination of top mass, *ie.* top mass measurement not included in the fit
- in agreement with direct Tevatron measurement (and D0 determination from top-pair cross-section [D0, Phys.Rev.D80,054009])

Determination of W Mass

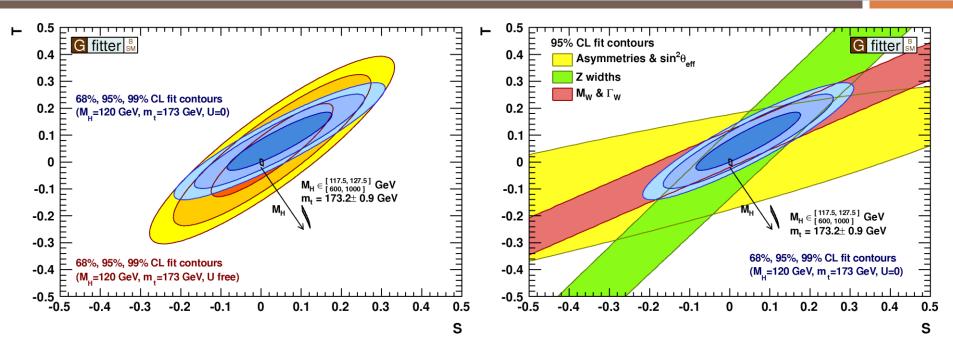
- indirect determination of W mass, *ie.* no value for M_W is used in fits
- in agreement with world average of W mass
- indirect determination including direct Higgs constraints exceeds the precision of the world average


W and Top Mass

- indirect fit results agree with experimental values
- results from Higgs searches significantly reduce the allowed parameter space
- illustrative probe of SM (if M_H is measured at LHC and/or ILC)
- in addition good probe for new physics models (like SUSY)

Oblique Corrections

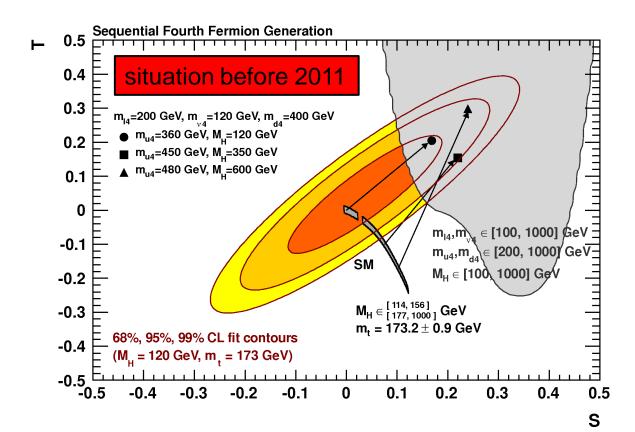
physic beyond SM appear only through vacuum polarization



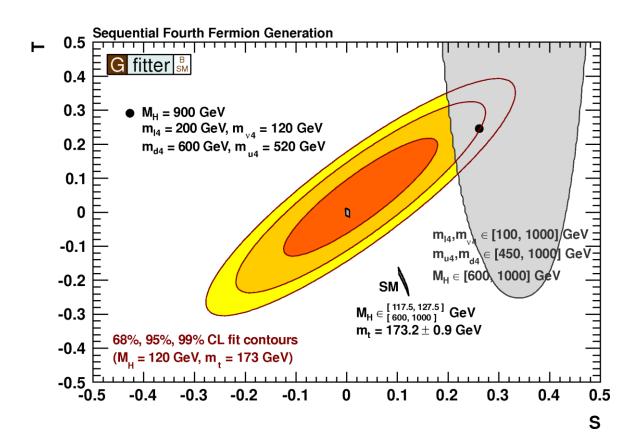
- two equivalent sets of parameters exist: ε and STU parameters [Altarelli et al, Nucl. Phys. B405, 3 (1993)] [Peskin and Takeuchi, Phys. Rev. D46, 1 (1991)]
- SM predictions modified by parameterization of STU parameters [Burgess, Pramana 45, S47 (1995)]
 - **S**: new physics contribution to neutral current
 - (S+U): new physics contribution to charged current
 - U only sensitive to W mass and width
 - usually very small in new physics models (often: U=0)
 - T: difference between neutral and charged current (sensitive to isospin violation)

$$O_{\text{STU}} = O_{\text{SM}}(M_{\text{H,ref}}, m_{\text{t,ref}}) + c_{\text{S}}S + c_{\text{T}}T + c_{\text{U}}U$$

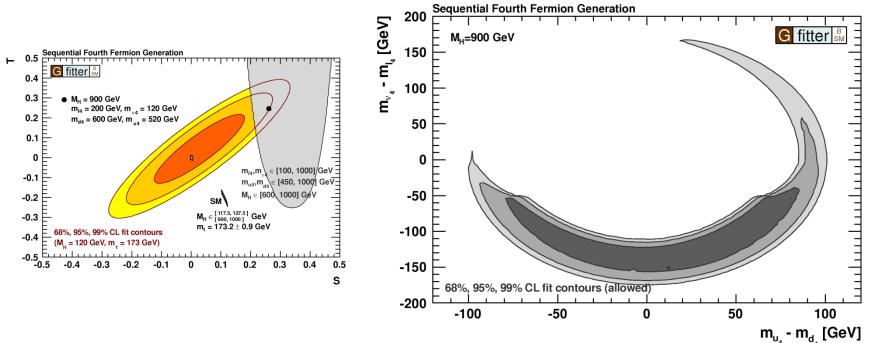
- depend on a (somewhat arbitrary) SM reference point
- S=T=U=0 if data are equal to SM_{ref} prediction


Fit of STU Parameters

- derived from fit to electroweak precision observables (SM_{ref}: M_H=120 GeV, m_t=173 GeV)
- S = 0.03 ± 0.10, T = 0.05 ± 0.12, U = 0.03 ± 0.10 (with large correlation)
- STU values consistent with zero \rightarrow new physics contributions are small
- SM predictions (gray band) prefers small Higgs mass
- constraining new physics models by replacing STU parameters by their predictions in the new physics model


Sequential Fourth Generation

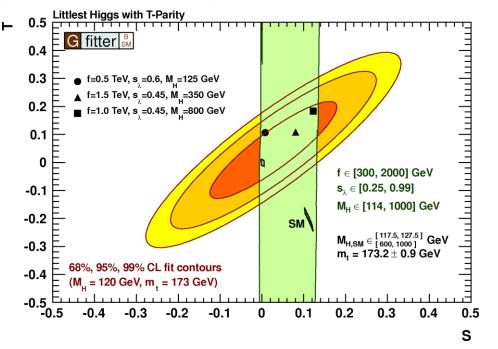
- oblique parameters mostly sensitive to mass difference of new generation [Phys.Rev.D64, 053004 (2001)]
- SM4: enhanced Higgs mass production → Higgs masses excluded up to 600 GeV (some masses around 120 GeV still allowed) [CMS-PAS-HIG-12-008]


Sequential Fourth Generation

- oblique parameters mostly sensitive to mass difference of new generation [Phys.Rev.D64, 053004 (2001)]
- SM4: enhanced Higgs mass production → Higgs masses excluded up to 600 GeV (some masses around 120 GeV still allowed) [CMS-PAS-HIG-12-008]

Sequential Fourth Generation

- oblique parameters mostly sensitive to mass difference of new generation [Phys.Rev.D64, 053004 (2001)]
- SM4: enhanced Higgs mass production → Higgs masses excluded up to 600 GeV (some masses around 120 GeV still allowed) [CMS-PAS-HIG-12-008]



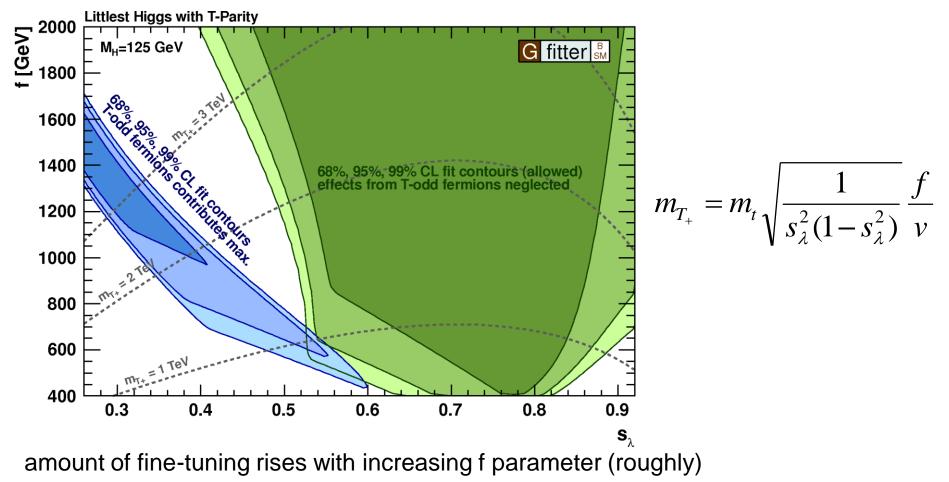
fourth charged lepton heavier than fourth neutrino

Littlest Higgs Model with T-Parity

- Higgs pseudo-Nambu-Goldstone boson (gets its mass from multi-loop corrections) [Arkani-Hamed et al., JHEP 07, 034 (2002)]
- new fermions and new gauge bosons
 - two new top states (T-odd m_{T-} and T-even m_{T+})
 - LH solves hierarchy problem (new particles cancel SM loops)
- T-parity forbids tree-level contribution from heavy gauge bosons to SM observables [Cheng et al., JHEP 09, 051 (2003)] [Cheng et al., JHEP08, 061 (2004)]

- provide dark matter candidate
- parameters of LH model
 - f symmetry breaking scale (scale of new particles)
 - $s_{\lambda} \cong m_{T_{-}} / m_{T_{+}}$ ratio of masses in top sector
 - order one-coefficient d_c (exact value depends on detail of UV physics)
 - treated as theory uncertainty in fit (Rfit) δ_c =-5...5
- oblique parameters replaced by corrections from LH model [Hubisz et al., JHEP 0601:135 (2006)]

Higgs can also decay into invisible particles


➔ no direct Higgs limits used

S contribution rather small compared to T parameter

Martin Goebel - Update of the electroweak SM Fit and Constraints of SM Extensions

Littlest Higgs Model with T-Parity

- new T-even top state similar phenomenology SM top quark (e.g. T₊→bW, pair production and single production)
- T-odd top state produced in pairs (decay: $T_- \rightarrow tA_H$)

Summary

Standard Model

- electroweak SM describes well the electroweak precision data
- indirect Higgs determination consistent with direct Higgs limits
- α_S from electroweak fit and τ-decays provide good test of the asymptotic freedom property of QCD

Physics beyond the Standard Model

- constraints from the electroweak precision data via the oblique parameters
- simple sequential fourth generation might have problems
- but: many other interesting models extending the three SM generations (e.g. littlest Higgs model with T-parity)