

XLIVth Rencontres de Moriond on QCD and High Energy Interactions March 14th – March 21st 2009, La Thuile, Italy

The global Standard Model fit to electroweak precision data

http://cern.ch/Gfitter

Paper accepted for publication in EPJ C (arXiv:0811.0009)

For the Gfitter Group^{*)} Jörg Stelzer (DESY, Germany)

*) M.Baak (CERN), H.Flächer (CERN), M. Goebel (Univ. Hamburg, DESY), J.Haller (Univ. Hamburg), A. Höcker (CERN), D. Ludwig (Univ. Hamburg), K. Mönig (DESY), M.Schott (CERN), J. S.

The Gfitter Project

- > Gfitter: A Generic Fitter Project for HEP Model Testing
 - provide a flexible framework for involved fitting problems in the LHC era
 - Based on the ROOT framework (math lib, drawing)
- > Physics: plug-in packages
 - **GSM**: Standard Model fit to the electroweak precision data
 - **G2HDM**: Two Higgs Doublet Model extension of the SM
 - **GOBLIQUE**: Oblique parameters S,T, U in the global EW fit
 - ✤ presented by M. Goebel at Moriond EW
- > Advanced statistical analyses methods:
 - *e.g.* parameter scans, MC toy analyses, p-value, goodness-of-fit, etc.
 - follows frequentist approach
- Consistent treatment of statistical, systematic and theoretical errors, correlations, and inter-parameter dependencies
 - [CKM fitter, EPJ C21, 225 (2002)]

- theoretical uncertainties: Rfit prescription
 - $\, \star \,$ theory uncertainties included in χ^2 estimator with flat likelihood in allowed ranges

The Electroweak Fit

- SM predictions of electroweak precision observables
- Complete re-implementation of electroweak theory
 Excellent agreement with Zfitter
- State-of the art calculations in the OMS scheme
 - $_{\odot}~~$ M_w and sin^2 θ^{f}_{eff} : two-loop and leading beyond-two-loop correction

[M. Awramik et al., Phys. Rev D69, 053006 (2004 and ref.][M. Awramik et al., JHEP 11, 048 (2006) and refs.]

• Radiator functions: N³LO of the massless QCD Adler function

[P.A. Baikov et al., Phys. Rev. Lett. 101 (2008) 012022]

G fitter SM

> Two versions of fits

- 'Standard fit': all data except results from the direct Higgs searches
- *Complete fit*: all data including results from direct Higgs searches at LEP and Tevatron [ADLO Phys.Lett. B565, 61 (2003)] [CDF+D0: arXiv:0804.3423] [CDF+D0: arXiv:0808.0534]

The Electroweak Fit – Experimental Input

	Z-pole precision cross-section and asymmetry measurements from LEP/SLC:	Parameter	Input value
	• M _Z , Γ _Z [ADLO +SLD, Phys. Rept. 427, 257 (2006)]	M_Z [GeV]	91.1875 ± 0.0021
	• hadronic pole x-section σ^0_{had}	Γ_Z [GeV]	2.4952 ± 0.0023
	 leptonic ratio R⁰ 	$\sigma_{ m had}^0$ [nb]	41.540 ± 0.037
	• the hadronic ratios R_c^0 , R_b^0	R_ℓ^0	20.767 ± 0.025
	 includes SLD measurements 	$A_{ m FB}^{0,\ell}$	0.0171 ± 0.0010
	 FB asymmetries l,b,c (final state angular distribution) 	$A_\ell (\star)$	0.1499 ± 0.0018
	 LR asymmetries 	A_c	0.670 ± 0.027
	• SLC A_{μ}, A_{b}, A_{c} (IS polarization), LEP $A_{\mu}(\tau \text{ polarization})$	A_b	0.923 ± 0.020
		$A_{\mathrm{FB}}^{0,c}$	0.0707 ± 0.0035
	M., and F., from I FP/Tevatron [ADLO CDE+DO: arXiv:0811.4682]	$A_{\mathrm{FB}}^{0,0}$	0.0992 ± 0.0016
		R_c^0	0.1721 ± 0.0030
		R_b^0	0.21629 ± 0.00066
	m _c , m _b world averages [PDG, J. Phys. G33,1 (2006)]	$\sin heta_{ m eff}^{ m c}(Q_{ m FB})$	0.2324 ± 0.0012
		M_H [GeV] $^{(\circ)}$	Likelihood ratios
\triangleright	m _t latest Tevatron average [arXivx:0808.1089 [hep-ex]]	M_W [GeV]	80.399 ± 0.025
		Γ_W [GeV]	2.098 ± 0.048
\triangleright	$\Delta \alpha_{had}^{(5)}(M_z^2)$ including α_s dependency ^{[arXivx:0808.1089 [hep-ex]]}	\overline{m}_c [GeV]	1.25 ± 0.09
		\overline{m}_b [GeV]	4.20 ± 0.07
\triangleright	M _µ in complete fit: likelihood ratios from Tevatron	$m_t \; [{ m GeV}]$	172.4 ± 1.2
		$\Delta \alpha_{\rm had}^{(5)}(M_Z^2)^{(\dagger \bigtriangleup)}$	2768 ± 22

G fitter SM

SM Fit

G fitter SM

- Free fit parameters: \triangleright
 - \circ M_Z, M_H, m_t, Δα_{had}⁽⁵⁾(M_Z²), α_S(M_Z²), m_c, m_h
 - \circ Δα_{had}⁽⁵⁾(M_z²) floating instead of α
 - Other contributions: leptonic and t-guark (well known)
- Fixed (world average): G_F and masses of leptons and light quarks
 - Well known and/or negligible effect
- Parameters for theoretical uncertainties \triangleright
 - $M_{W}: \delta M_{W} = 4 \text{GeV}; \sin^2 \theta_{eff}^{I}: \delta \sin^2 \theta_{eff}^{I} = 4.7 \cdot 10^{-5}$
 - electroweak form factors ρ_{7}^{f} , κ_{7}^{f} : negligible effect 0
- LEP/Tevatron direct SM Higgs searches
 - interpret $-2\ln Q(M_{H})$ as measurement 0
 - transform 1-sided into 2-sided CL 0
 - fit contribution $\delta \chi^2 = 2[Erf^{-1}(1-CL_{s+h}^{two-sided})]^2$ 0

160 170

two-sided

CL_{s+b}

190 M_H [GeV]

SM Fit Results – Model Test

Goodness of fit:

0

0

- Probability for wrongly rejecting SM: (21.7±0.4)%
 - No indication of new physics
- Pull values of complete fit: \geq
 - largest χ^2_{min} contribution from A_{FR} of b-quark 2.6 σ 0
 - Small contributions from $M_{_{7}}$, $\Delta \alpha^{\text{had}}(M_{_{7}})$, $m_{_{C}}$, $m_{_{h}}$ 0 indicate that their input accuracies exceed fit requirements
- Complete fit results in backup slides \geq

3

G fitter SM

0.1

0.2

-1.7

-1.0

-0.8

0.3

-1.9

-0.8

0.9

2.6

-0.1

0.6

0.0

-0.8

-0.1

-1.4

-0.1

0.0

-0.0

0.4

Checking α_s in N³LO

<u>α_s from complete fit</u>

 $\alpha_{S}(M_{Z}^{2}) = 0.1193^{+0.0028}_{-0.0027} \pm 0.0001$

- first error is experimental fit error
- second error due to truncated
 pQCD expansion:
- excellent agreement with recent
 N³LO result from τ-decay

 $\alpha_s(M_Z^2) = 0.1212 \pm 0.0011$

 Sensitive test to RGE evolution over two orders of magnitude

[M. Davier et al., arXiv:0803.0979] 4-loop RGE evolution of $\alpha_s(\mu)$ and measurements 0.45 τ decays N³LO (jet & event-shape • N²LO 0.4 event-shape △ NLO QQ states (lattice) (σ_{had}) 0.35 e⁻ (jet & event-shape) ſ' decays 0.3 DIS (Bj-SR) $\alpha_{s}(\mu)$ 0.25 (Z width) DIS (GLS-SR) 0.2 0.15 ťש $p p \to b \bar{b} X, \gamma X$ 0.1 0.13 $(\overset{z}{M})_{\chi}^{s}$ 0.12 0.11 DIS (e/µ; F₂) 10² 1 10 (GeV) μ scale

Higgs Mass Constraint

2σ interval: [39, 155] GeV

Central value $\pm 1\sigma$: $M_{H} = 80^{+30}_{-23} \text{ GeV}$

 M_{H} from standard fit:

 \triangleright

 \triangleright

 \geq

0

0

G fitter SM Standard fit ರ LEP exclusi Theory uncertainty Fit including theory errors Fit excluding theory errors 100 150 200 250 50 M_H [GeV] Complete fit **3**σ exclusi Ъ

> Theory uncertainty Fit including theory errors

Fit excluding theory errors

240

Revisiting the Global EW Fit with Gfitter - Moriond 17th March 2009

120

LEP

2.4 fb⁻¹

140

160

180

3 fb⁻¹

200

100

10

 $\Delta \chi^2$

M_H [GeV]

260

2σ

280

Higgs Mass Constraint

Parameter	$\ln M_H$	$\Delta lpha_{ m had}^{(5)}(M_Z^2)$	M_Z	$lpha_{\scriptscriptstyle S}(M_Z^2)$	m_t	\overline{m}_c	\overline{m}_b
$\ln M_H$	1	-0.395	0.113	0.041	0.309	-0.001	-0.006
$\Delta lpha_{ m had}^{(5)}(M_Z^2)$		1	-0.006	0.101	-0.007	0.001	0.003
M_Z			1	-0.019	-0.015	-0.000	0.000
$lpha_{\scriptscriptstyle S}(M_Z^2)$				1	0.021	0.011	0.043
m_t					1	0.000	-0.003
\overline{m}_c						1	0.000

Correlation coefficients between the free fit parameters in the standard fit.

Known tension between A_I(SLD) and
 A^{0,b}_{FB}

Compatibility test (toy analysis):

- > Shift in χ^2_{min} when least compatible measurement (here $A_{FB}^{0,b}$) removed: $\Delta \chi^2_{min} = 8.0$
- > Generate toy around fitted values, and repeat procedure -> $\Delta \chi^2_{min}$ distribution
- > $(1.4\pm0.1)\%$ of toy experiments exceed $\Delta \chi^2_{min} = 8.0$ ("2.5 σ ")

Fitted value for M_H when removing all but the indicated observable from the fit

G fitter SM

Top Quark Mass

Top mass comparison:

- **Complete fit:** $m_t = 178.2^{+9.8}_{-4.2} GeV$
 - Tevatron measurement:

Standard fit:

$$m = 172.4 \pm 1.2 GeV$$

 $m_t = 177.0^{+10.8}_{-8.0} GeV$

2-D scans:

0

- Standard fit (excluding M_w and m_t) agrees with experimental values
- Results from Higgs searches reduce allowed parameter space significantly
- Good probe of SM if M_H is measured at LHC/ILC

Prospects for LHC and ILC

- > Fit prediction of M_H and $\alpha_s(M_z^2)$ in light of LHC, ILC (GigaZ option)
 - Conservative estimates on improvement on σ(M_W), σ(m_t), σ(sin²θ^I_{eff}), and σ(R_I⁰)
 - $_{0}$ Anticipate improved calculation of $\Delta\alpha_{had}{}^{(5)}(M_{Z}{}^{2})$

Requires $\sigma(\sigma_{had})$ ≤1% below J/ψ
[F. Jegerlehner, hep-ph/0105283]

- Cross-section measurements by BABAR (ISR-based) and BESIII should improve $\Delta \alpha^{had}(M_Z)$
- Improvement of M_H prediction
 - Assume M_H=120GeV by adjusting central values of all observables
 - Broad minima: Rfit treatment of theoretical uncertainties
 - Confront with direct measurement
- GigaZ: significant improvement for α_s(M_z²) and M_H owing to smaller σ(R_I⁰)

0	Expected uncertainty					
Quantity	Present	LHC	ILC	GigaZ (ILC)		
M_W [MeV]	25	15	15	6		
$m_t [\text{GeV}]$	1.2	1.0	0.2	0.1		
$\sin^2 \theta_{\rm eff}^{\ell} \ [10^{-5}]$	17	17	17	1.3		
$R_{\ell}^0 \; [10^{-2}]$	2.5	2.5	2.5	0.4		
$\Delta \alpha_{\rm had}^{(5)}(M_Z^2) [10^{-5}]$	22 (7)	22 (7)	22 (7)	22 (7)		
$\overline{M_H(= 120 \text{ GeV}) [\text{ GeV}]}$	$^{+56}_{-40} \begin{pmatrix} +52\\ -39 \end{pmatrix} \begin{bmatrix} +39\\ -31 \end{bmatrix}$	$^{+45}_{-35} \begin{pmatrix} +42\\ -33 \end{pmatrix} \begin{bmatrix} +30\\ -25 \end{bmatrix}$	$^{+42}_{-33} \begin{pmatrix} +39\\ -31 \end{pmatrix} \begin{bmatrix} +28\\ -23 \end{bmatrix}$	$^{+27}_{-23} \left(^{+20}_{10} \right) \left[^{+8}_{-7} \right]$		
$\alpha_s(M_Z)$ [10]	28	28	27			

Input values taken from:

[CMS, Physics TDR (2006)][A. Djouadi et al., arXiv:0709.1893] [I. Borjanovic, EPJ C39S2, 63 (2005)][S. Haywood et al., hep-ph/0003275] [ATLAS, Physics TDR (1999)][R. Hawkings, K. Mönig, EPJ direct C1, 8 (1999)] [A. H. Hoang et al., EPJ direct C2, 1 (2000)] [M. Winter, LC-PHSM-2001-016]

Revisiting the Global EW Fit with Gfitter - Moriond 17th March 2009

Revisiting the Global EW Fit with Gfitter - Moriond 17th March 2009

SM Extension – Two-Higgs-Doublet-Model

> Type-II Model:

- Higgs-fermion coupling: up- and down-type fermions couple to different doublets
- $_{\circ}$ 6 free parameters: M_{H±} , M_{A0}, M_{H0}, M_h, tanβ, |α|

- > So far: observables sensitive to $H^{\pm} \rightarrow M_{H^{\pm}}$, tan β
 - Hadronic Z width ratio: R_b^0
 - Semileptonic B decay: $B \rightarrow D\tau v / Dev$
 - Radiative B and leptonic meson decays: $B \rightarrow X_s \gamma$, $B \rightarrow \mu \nu / \tau \nu$, $K \rightarrow \mu \nu / \pi \rightarrow \mu \nu$

observable	input value
R _b ⁰	0.21629 ± 0.00066
BR (B->Χ _s γ)	(3.52±0.23±0.09)·10 ⁻⁴
BR (Β->τν)	(1.51±0.33)·10 ⁻⁴
BR (Β->μν)	<1.3·10 ⁻⁶ at 90% CL
BR (K->μν)/ BR(p->μν)	1.004±0.007
BR(B->Dτν)/ BR(B->Dev)	0.416±0.117±0.052

2HDM – Combined Fit

- Combined fit:
 - Exclusion area depends on assumption on number of degrees of freedom
 - ✤ n_{dof}=1 where single constraint dominates
 - n_{dof}=2 where several observable contribute
 - MC toy study to determine exclusion area
- Exclude at 95% CL
 - \circ Small tan β
 - \circ M_{H±} < 240 GeV for all tan β
 - $M_{H\pm}$ < 780 GeV for tan β =70
- Combined limit not necessarily stronger than single constraint due to increasing n_{dof}

Fitting with the New Tevatron Results

> New M_w mass by D0:

$$M_W = 80.401 \pm 0.025_{\text{stat}} \pm 0.035_{\text{exp}} \pm 0.037_{\text{corr}} \text{ GeV}/c^2$$

- Tevatron average not yet released, use preliminary world average: M_w=80.399 ± 0.023 GeV/c² (error was 0.025 GeV/c² before)
- New top mass from Tevatron (previous 172.4±1.2 GeV/c²)

 $m_t = 173.1 \pm 0.6_{\text{stat}} \pm 1.1_{\text{sys}} \,\text{GeV}/c^2$

New Higgs search limits: exclusion between 160 and 170 GeV/c²

G fitter SM

New Higgs Mass Constraints

- > M_{H} from standard fit:
 - $_{\circ}$ $\,$ Fit input for M_{W} is our preliminary average!
 - Central value $\pm 1\sigma$: $M_{H} = 82.8^{+30}_{-23} \,\text{GeV}$
 - $_{\circ}$ 2σ and 3σ interval: [41, 158] and [28, 211] GeV
 - (Previously: $M_{H} = 80^{+30}_{-23} \,\text{GeV}$)
- Shift of mean and intervals up by about 3GeV
 - $_{\rm O}$ $\,$ Positive correlation between $M_{\rm H}$ and $m_{\rm t}$

- Complete fit: input from direct searches
 - Fit needs CL_{s+b} as input (we look for agreement with SM), Higgs searches use CL_s (for exclusion limits) which is more conservative
 - We are in contact with the Tevatron New Phenomena and Higgs WG (TEVNPHWG) for these numbers
 - $_{\rm O}$ $\,$ Expect significantly tighter limits on $\rm M_{H}$

Conclusions and Prospects

- Continue to update Gfitter for SM and 2HDM fits
 - <u>http://cern.ch/Gfitter</u>
- Next steps: Look further beyond the SM
 - Implementation of oblique parameters and Littlest-Higgs-Model
 - ✤ presented at Moriond EW

fitter

(5

NUMERICAL RESULTS

Revisiting the Global EW Fit with Gfitter - Moriond 17th March 2009

Fit results (I) without New Tevatron Results

Parameter	Input value	Free in fit	Results from global EW fits: Standard fit Complete fit		Complete fit w/o exp. input in line
M_Z [GeV]	91.1875 ± 0.0021	yes	91.1874 ± 0.0021	91.1877 ± 0.0021	$91.2001\substack{+0.0174\\-0.0178}$
Γ_Z [GeV]	2.4952 ± 0.0023	_	2.4959 ± 0.0015	2.4955 ± 0.0015	2.4950 ± 0.0017
$\sigma_{ m had}^0 \; [{ m nb}]$	41.540 ± 0.037	_	41.477 ± 0.014	41.477 ± 0.014	41.468 ± 0.015
R^0_ℓ	20.767 ± 0.025	_	20.743 ± 0.018	20.742 ± 0.018	$20.717^{+0.029}_{-0.025}$
$A_{ m FB}^{0,\ell}$	0.0171 ± 0.0010	_	0.01638 ± 0.0002	0.01610 ± 0.9839	0.01616 ± 0.0002
A_ℓ (*)	0.1499 ± 0.0018	_	$0.1478^{+0.0011}_{-0.0010}$	$0.1471\substack{+0.0008\\-0.0009}$	_
A_c	0.670 ± 0.027	_	$0.6682^{+0.00046}_{-0.00045}$	$0.6680^{+0.00032}_{-0.00046}$	$0.6680^{+0.00032}_{-0.00047}$
A_b	0.923 ± 0.020	_	$0.93470^{+0.00011}_{-0.00012}$	$0.93464^{+0.00008}_{-0.00013}$	$0.93464^{+0.00008}_{-0.00011}$
$A^{0,c}_{ m FB}$	0.0707 ± 0.0035	_	0.0741 ± 0.0006	$0.0737^{+0.0004}_{-0.0005}$	$0.0737^{+0.0004}_{-0.0005}$
$A^{0,b}_{ m FB}$	0.0992 ± 0.0016	_	0.1036 ± 0.0007	$0.1031^{+0.0007}_{-0.0006}$	0.1036 ± 0.0005
R_c^0	0.1721 ± 0.0030	_	0.17224 ± 0.00006	0.17224 ± 0.00006	0.17225 ± 0.00006
R_b^0	0.21629 ± 0.00066	_	$0.21581^{+0.00005}_{-0.00007}$	0.21580 ± 0.00006	0.21580 ± 0.00006
$\sin^2 \theta_{\rm eff}^{\ell}(Q_{\rm FB})$	0.2324 ± 0.0012	_	0.23143 ± 0.00013	$0.23151^{+0.00012}_{-0.00010}$	$0.23149^{+0.00013}_{-0.00009}$
M_H [GeV] ^(o)	Likelihood ratios	yes	$80^{+30[+75]}_{-23[-41]}$	$116.4^{+18.3[+28.4]}_{-\ 1.3[-\ 2.2]}$	$80^{+30[+75]}_{-23[-41]}$
M_W [GeV]	80.399 ± 0.025	_	$80.382^{+0.014}_{-0.016}$	80.364 ± 0.010	$80.359^{+0.010}_{-0.021}$
Γ_W [GeV]	2.098 ± 0.048	_	$2.092^{+0.001}_{-0.002}$	2.091 ± 0.001	$2.091^{+0.001}_{-0.002}$

Fit results (II) without New Tevatron Results

Parameter	Input value	Free in fit	Results from global EW fits: Standard fit Complete fit		Complete fit w/o exp. input in line	
$\overline{m}_c [{ m GeV}]$	1.25 ± 0.09	yes	1.25 ± 0.09	1.25 ± 0.09	_	
$\overline{m}_b [{ m GeV}]$	4.20 ± 0.07	yes	4.20 ± 0.07	4.20 ± 0.07	_	
$m_t [{ m GeV}]$	172.4 ± 1.2	yes	172.5 ± 1.2	172.9 ± 1.2	$178.2^{+9.8}_{-4.2}$	
$\Delta \alpha_{\rm had}^{(5)}(M_Z^2) \ ^{(\dagger \bigtriangleup)}$	2768 ± 22	yes	2772 ± 22	2767^{+19}_{-24}	2722^{+62}_{-53}	
$\alpha_s(M_Z^2)$	_	yes	$0.1192^{+0.0028}_{-0.0027}$	$0.1193^{+0.0028}_{-0.0027}$	$0.1193^{+0.0028}_{-0.0027}$	
$\delta_{ m th} M_W ~[{ m MeV}]$	$[-4,4]_{ m theo}$	yes	4	4	_	
$\delta_{ m th} \sin^2 \theta_{ m eff}^{\ell}$ (†)	$[-4.7, 4.7]_{ m theo}$	yes	4.7	-1.3	_	
$\delta_{ m th} ho_Z^{f}$ (†)	$[-2,2]_{\mathrm{theo}}$	yes	2	2	_	
$\delta_{ m th}\kappa^f_Z$ (†)	$[-2,2]_{ m theo}$	yes	2	2	_	

^(*)Average of LEP ($A_{\ell} = 0.1465 \pm 0.0033$) and SLD ($A_{\ell} = 0.1513 \pm 0.0021$) measurements. The complete fit w/o the LEP (SLD) measurement gives $A_{\ell} = 0.1472 \substack{+0.0008 \\ -0.0011}$ ($A_{\ell} = 0.1463 \pm 0.0008$). ^(o)In brackets the 2σ errors. ^(†)In units of 10^{-5} . ^(Δ)Rescaled due to α_s dependency.

Fit results (I) with New Tevatron W and Top Mass

Parameter	Input value	Free in fit	Results from global EW fits: Standard fit Complete fit		Complete fit w/o exp. input in line
M_Z [GeV]	91.1875 ± 0.0021	yes	91.1874 ± 0.0021	91.1877 ± 0.0021	$91.1978^{+0.0176}_{-0.0163}$
Γ_Z [GeV]	2.4952 ± 0.0023	_	2.4960 ± 0.0015	2.4956 ± 0.0015	$2.4953^{+0.0016}_{-0.0018}$
$\sigma_{ m had}^0$ [nb]	41.540 ± 0.037	_	41.478 ± 0.014	41.478 ± 0.014	41.469 ± 0.015
R^0_ℓ	20.767 ± 0.025	_	20.742 ± 0.018	20.741 ± 0.018	20.717 ± 0.027
$A^{0,\ell}_{ m FB}$	0.0171 ± 0.0010	_	0.01638 ± 0.0002	0.01624 ± 0.0002	$0.01617^{+0.0002}_{-0.0001}$
A_ℓ (*)	0.1499 ± 0.0018	_	0.1478 ± 0.0010	0.1472 ± 0.0009	_
A_c	0.670 ± 0.027	_	$0.6682^{+0.00045}_{-0.00044}$	$0.6679^{+0.00041}_{-0.00038}$	$0.6679^{+0.00045}_{-0.00032}$
A_b	0.923 ± 0.020	_	0.93469 ± 0.00010	0.93464 ± 0.00007	0.93464 ± 0.00007
$A^{0,c}_{ m FB}$	0.0707 ± 0.0035	_	$0.0741^{+0.0006}_{-0.0005}$	0.0737 ± 0.0005	$0.0738 {}^{+0.0004}_{-0.0006}$
$A^{0,b}_{ m FB}$	0.0992 ± 0.0016	_	0.1036 ± 0.0007	$0.1032^{+0.0007}_{-0.0006}$	$0.1037^{+0.0004}_{-0.0005}$
R_c^0	0.1721 ± 0.0030	_	0.17225 ± 0.00006	0.17225 ± 0.00006	0.17225 ± 0.00006
R_b^0	0.21629 ± 0.00066	_	0.21578 ± 0.00005	0.21577 ± 0.00005	0.21577 ± 0.00005
$\sin^2\!\theta^\ell_{ m eff}(Q_{ m FB})$	0.2324 ± 0.0012	_	0.23142 ± 0.00013	$0.23148^{+0.00013}_{-0.00010}$	$0.23149^{+0.00012}_{-0.00011}$
M_H [GeV] ^(\circ)	Likelihood ratios	yes	$83^{+30[+75]}_{-23[-41]}$	$116.4^{+18.4[+28.5]}_{-1.3[-2.2]}$	$83^{+30[+75]}_{-23[-41]}$
M_W [GeV]	80.399 ± 0.023	_	$80.384^{+0.014}_{-0.015}$	$80.370^{+0.008}_{-0.010}$	$80.360^{+0.013}_{-0.019}$
Γ_W [GeV]	2.098 ± 0.048	_	$2.092^{+0.001}_{-0.002}$	2.091 ± 0.001	2.091 ± 0.001

Fit results (II) with New Tevatron W and Top Mass

Parameter	Input value	Free in fit	Results from <i>Standard fit</i>	global EW fits: <i>Complete fit</i>	Complete fit w/o exp. input in line
\overline{m}_c [GeV]	1.25 ± 0.09	yes	1.25 ± 0.09	1.25 ± 0.09	_
\overline{m}_b [GeV]	4.20 ± 0.07	yes	4.20 ± 0.07	4.20 ± 0.07	_
$m_t \; [\text{GeV}]$	173.1 ± 1.3	yes	173.2 ± 1.2	173.6 ± 1.2	$178.4^{+9.7}_{-4.1}$
$\Delta \alpha_{\rm had}^{(5)}(M_Z^2)^{(\dagger \Delta)}$	2768 ± 22	yes	2772 ± 22	2763^{+24}_{-20}	2728^{+62}_{-53}
$\alpha_s(M_Z^2)$	_	yes	$0.1192^{+0.0028}_{-0.0027}$	0.1193 ± 0.0028	0.1193 ± 0.0028
$\delta_{ m th} M_W$ [MeV]	$[-4,4]_{\mathrm{theo}}$	yes	4	4	_
$\delta_{\mathrm{th}} \sin^2 \theta_{\mathrm{eff}}^{\ell} $ (†)	$[-4.7, 4.7]_{\mathrm{theo}}$	yes	4.7	0.8	—
$\delta_{ m th} ho_Z^f$ (†)	$[-2,2]_{\text{theo}}$	yes	2	2	_
$\delta_{ m th}\kappa^f_Z$ (†)	$[-2,2]_{\mathrm{theo}}$	yes	2	2	—

^(*)Average of LEP ($A_{\ell} = 0.1465 \pm 0.0033$) and SLD ($A_{\ell} = 0.1513 \pm 0.0021$) measurements. The *complete fit* w/o the LEP (SLD) measurement gives $A_{\ell} = 0.1473 \pm 0.0009$ ($A_{\ell} = 0.1464 \pm 0.0008$). ^(o)In brackets the 2σ . ^(†)In units of 10^{-5} . ^(Δ)Rescaled due to α_s dependency.