The electroweak fit of the Standard Model after the discovery of an SM-like scalar boson

Andreas Hoecker (CERN)

Solvay workshop "Facing the Scalar Sector", May 29-31, 2013

Solvay workshop, May 29-31, 2013

Andreas Hoecker — The electroweak fit of the Standard Mode

Electroweak physics at the Z-pole

Vector and axial-vector couplings for $Z \rightarrow ff$ in SM at tree level:

$$g_{V,f}^{(0)} \equiv g_{L,f}^{(0)} + g_{R,f}^{(0)} = I_3^f - 2Q^f \sin^2 \theta_w , \quad \sin^2 \theta_w = 1 - \frac{M_w^2}{M_z^2}$$
$$g_{A,f}^{(0)} \equiv g_{L,f}^{(0)} - g_{R,f}^{(0)} = I_3^f$$

Electroweak unification: relation between weak and electromagnetic couplings:

$$G_{F} = \frac{\pi \alpha(0)}{\sqrt{2}M_{W}^{2}\left(1 - M_{W}^{2}/M_{Z}^{2}\right)} , \quad M_{W}^{2} = \frac{M_{Z}^{2}}{2} \cdot \left(1 + \sqrt{1 - \frac{\sqrt{8}\pi \alpha}{G_{F}M_{Z}^{2}}}\right)$$

Gauge sector of SM on tree level is given by three free parameters, $e.g.: \alpha, M_Z, G_F$ (best known!)

Z-lepton coupling almost pure axial-vector

(γ pure vector \rightarrow large offpeak interference \rightarrow could establish Z-fermion coupling at PETRA, interesting for Z' searches via interference)

Electroweak physics at the Z-pole

Radiative corrections modifying propagators and vertices

Significance of radiative corrections can be illustrated by verifying tree level relation:

$$\sin^2\theta_w = 1 - \frac{M_w^2}{M_z^2}$$

Using the measurements:

 $M_{W} = (80.399 \pm 0.023) \text{ GeV}$ $M_{Z} = (91.1875 \pm 0.0021) \text{ GeV}$

one predicts: $\sin^2 \theta_w = 0.22284 \pm 0.00045$

which is 18 σ away from the experimental value obtained by combining all asymmetry measurements: $\sin^2 \theta_w = 0.23153 \pm 0.00016$

Electroweak physics at the Z-pole

Electroweak physics at the Z-pole

Radiative corrections modifying propagators and vertices

Leading order terms ($M_W \ll M_H$)

• $\rho_{\rm Z}$ and $\kappa_{\rm Z}$ can be split into sum of universal contributions from propagator self-energies:

$$\Delta \rho_{Z} = \frac{3G_{F}M_{W}^{2}}{8\sqrt{2}\pi^{2}} \left[\frac{m_{t}^{2}}{M_{W}^{2}} - \tan^{2}\theta_{W} \left(\ln \frac{M_{H}^{2}}{M_{W}^{2}} - \frac{5}{6} \right) + \dots \right]$$
$$\Delta \kappa_{Z} = \frac{3G_{F}M_{W}^{2}}{8\sqrt{2}\pi^{2}} \left[\frac{m_{t}^{2}}{M_{W}^{2}} \cot^{2}\theta_{W} - \frac{10}{9} \left(\ln \frac{M_{H}^{2}}{M_{W}^{2}} - \frac{5}{6} \right) + \dots \right]$$

• and flavour-specific vertex corrections, which are very small, except for top quarks, owing to large mass and $|V_{tb}|$ CKM element

$$\Delta \rho^f = -2\Delta \kappa^f = -\frac{G_F m_t^2}{2\sqrt{2}\pi^2} + \dots$$

Solvay workshop, May 29-31, 2013

Electroweak physics at the Z-pole

Radiative corrections modifying propagators and vertices

Leading order terms ($M_W \ll M_H$)

Radiative corrections allow us to test the SM and to constrain unknown SM parameters

 and flavour-specific vertex corrections, which are very small, except for top quarks, owing to large mass and | V_{tb} | CKM element

Electroweak physics at the Z-pole

Observables computed using ρ_{Z}^{f} , κ_{Z}^{f} , Δr and QED/QCD radiator functions $R_{A,f}$, $R_{V,f}$

Asymmetries:

$$A_{f} = \frac{2\operatorname{Re}\left(g_{V,f}/g_{A,f}\right)}{1 + \left[\operatorname{Re}\left(g_{V,f}/g_{A,f}\right)\right]^{2}}, \text{ where } \frac{\operatorname{Re}(g_{V,f})}{\operatorname{Re}(g_{A,f})} = 1 - 4\left|Q_{f}\right|\sin^{2}\theta_{eff}^{f}$$

Measured asymmetries (forward-backward, left-right [+ FB] (SLD), tau polarisation) can be expressed as functions of different A_f

Partial widths:

$$\Gamma_{f} = N_{c}^{f} \frac{G_{F} M_{Z}^{3}}{6\sqrt{2}\pi} \left| \rho_{Z}^{f} \right| \left(I_{3}^{f} \right)^{2} \left(\left| \frac{g_{V,f}^{2}}{g_{A,f}^{2}} \right| R_{V,f}(M_{Z}^{2}) + R_{A,f}(M_{Z}^{2}) \right)$$

Radiator functions for leptonic (hadronic) width involve QED (EW+QCD) corrections; \rightarrow dependence on $\alpha_{QED}(M_Z)$ and $\alpha_{S}(M_Z)$

Partial widths are highly correlated set of parameters. For EW fit, use:

- Z mass and width: M_Z (2×10⁻⁵ accuracy!), Γ_Z
- Hadronic pole cross section: σ_{had}^0
- Three leptonic ratios (use lepton-univ.): $R_{\ell}^{0} = R_{e}^{0} = \Gamma_{had} / \Gamma_{ee}$, R_{μ}^{0} , R_{τ}^{0}
- Hadronic width ratios: $R_b^0 = \Gamma_{b\bar{b}} / \Gamma_{had}$, R_c^0

Electroweak physics at the Z-pole

Observables computed using ρ_Z^f , κ_Z^f , Δr and QED/QCD radiator functions $R_{A,f}$, $R_{V,f}$

Latest calculations for observables used

$$\begin{split} \textbf{M}_{W} & \textbf{mass of the W boson} \\ O(\alpha^{2}), O(\alpha\alpha_{s}), O(G_{F}\alpha_{s}^{2}m_{t}^{2}), O(G_{F}^{2}\alpha_{s}m_{t}^{4}), O(G_{F}^{3}m_{t}^{6}) \\ \delta_{\text{theo}}M_{W} &= 4 \text{ MeV} \end{split}$$

[Awramik et al, PRD 69, 053006 (2004)*]

[Awramik et al, JHEP 11, 048, NP 813, 174 (2009)*]

• $\sin^2 \theta_{\text{eff}}^{\text{l}}$ effective weak mixing angle

 $O(\alpha^2), O(G_F^2 \alpha_s m_t^4), O(G_F^3 m_t^6)$ $\delta_{\text{theo}} \sin^2 \theta_{\text{eff}}^{\text{l}} = 4.7 \times 10^{-5}$

• Γ_Z , Γ_W Total widths of Z and W

[Cho et al, arXiv:1104*]

*R*_{*l*} leptonic width ratio

QCD Adler functions at 3NLO $\alpha_{\rm QED}(M_Z)$ from newest hadronic data

[Baikov et al., PRL 108, 222003 (2012)*] [Davier et al., EPJ.C71, 1515 (2011)]

R_b <u>Z</u> \rightarrow bb width ratio

Full two-loop fermionic correction (sizable: theoretical uncertainties larger than expected?)

[Freitas et al, JHEP 08, 050 (2012)*]

*References only those used directly by Gfitter. Full list of theoretical calculations referenced given in 0811.0009.

Solvay workshop, May 29-31, 2013

٠

Andreas Hoecker — The electroweak fit of the Standard Model

Solvay workshop, May 29-31, 2013

Andreas Hoecker - The electroweak fit of the Standard Model

Electroweak fits

Several groups perform these fits with regular updates (LEPEWWG, PDG, Gfitter, BSM groups)

A long tradition

- Precision measurements crucial. After LEP/SLC era, results from Tevatron & soon also LHC
- Huge & pioneering work to compute loop corrections to two-loop order or higher

Brout-Englert-Higgs hunting

- M_H last missing parameter of the SM
- Indirect determination (2011): $M_H = 96^{+31}_{-24}$ GeV
- Exclusion limits were incorporated in EW fits

Discovery of new boson in July 2012

- The cross section and branching ratios are (so far) compatible with the SM scalar boson
- Assume in the following that the boson is the SM scalar: $M_H = 125.7 \pm 0.4 \text{ GeV}^*$

*Exact value and uncertainty irrelevant for EW fit in SM

Experimental observables

Several groups perform these fits with regular updates (LEPEWWG, PDG, Gfitter, BSM groups)

Experimental inputs:

- Z-pole observables: LEP/SLD results (corrected for ISR/FSR QED effects) [ADLO & SLD, Phys. Rept. 427, 257 (2006)]
 - Total and partial cross sections around Z: M_Z , Γ_Z , σ^0_{had} , R_l^0 , R_c^0 , R_b^0
 - Asymmetries on the Z pole: $A_{FB}^{0,l}$, $A_{FB}^{0,b}$, $A_{FB}^{0,c}$, A_l , A_c , A_b , $\sin^2\theta_{eff}^l$ (Q_{FB})
- M_W and Γ_W : LEP + Tevatron average [arXiv:1204:0042]
- *m_t*: latest Tevatron average [CDF & D0, new combination, arXiv:1305.3929]
- *m_c*, *m_b*: world averages [PDG, Phys. Lett. B667, 1 (2008) and 2009 partial update for the 2010 edition]
- $\Delta \alpha_{had}(M_Z)$: data + QCD-driven [Davier et al., EPJ.C71, 1515 (2011) + rescaling mechanism to account for α_s dependency]
- M_H: LHC [arXiv:1207.7214, arXiv:1207.7235]

Fit parameters

- $\Delta \alpha_{had}(M_Z)$, $\alpha_S(M_Z)$, M_Z , M_H , m_c , m_b , m_t + theory uncertainty parameters $\delta_{theo}M_W / \sin^2 \theta_{eff}^l$
- Other parameters well enough known and fixed in fit

Parameter	Input value		Parameter	Input value
M_Z [GeV]	91.1875 ± 0.0021	4	$M_H \ [GeV]^{(\circ)}$	125.7±0.4 U
Γ_Z [GeV]	2.4952 ± 0.0023	<u> </u>	Mar [CoV]	20.285 ± 0.015
$\sigma_{ m had}^0$ [nb]	41.540 ± 0.037		$M_W [\text{GeV}]$	00.305 ± 0.013 2.085 ± 0.042
R^0_ℓ	20.767 ± 0.025			2.063 ± 0.042
$A_{ m FB}^{0,\ell}$	0.0171 ± 0.0010		$\overline{m}_c \; [\text{GeV}]$	$1.27^{+0.07}_{-0.11}$
$A_{\ell}^{(\star)}$	0.1499 ± 0.0018		\overline{m}_b [GeV]	$4.20^{+0.17}_{-0.07}$
$\sin^2 \theta_{\rm eff}^{\ell}(Q_{\rm FB})$	0.2324 ± 0.0012	••••••	$m_t \; [\text{GeV}]$	173.20 ± 0.87
A_c	0.670 ± 0.027		$\Delta \alpha_{ m had}^{(5)}(M_Z^2) \ ^{(\bigtriangleup)}$	\bigtriangledown) 2757 ± 10
A_b	0.923 ± 0.020	SL($lpha_{\scriptscriptstyle S}(M_Z^2)$	_
$A_{ m FB}^{0,c}$	0.0707 ± 0.0035	<u> </u>	$\delta M_{\rm eff} [{ m MeV}]$	[1 1],
$A_{ m FB}^{ar 0,ar b}$	0.0992 ± 0.0016	<u> </u>	$\delta_{\rm th} \sin^2 \theta^{\ell} (\Delta)$	[-4, 4]theo [-4, 7, 4, 7]
R_c^0	0.1721 ± 0.0030	0	$-\frac{\sigma_{\rm th} \sin \sigma_{\rm eff}}{2}$	[-4.1, 4.1]theo
R_b^0	0.21629 ± 0.00066	SL		

1.41		
	~ /	
r		
7 a 1		
	×	
r		
	/	
7		
·		

Correlations for observables from <i>Z</i> lineshape fit						
	M_Z	Γ_Z	$\sigma_{ m had}^0$	R^0_ℓ	$A^{0,\ell}_{ ext{\tiny FB}}$	
M_Z	1	-0.02	-0.05	0.03	0.06	
Γ_Z		1	-0.30	0.00	0.00	
$\sigma_{ m had}^0$			1	0.18	0.01	
R^0_ℓ				1	-0.06	
$A^{0,\ell}_{ ext{ m FB}}$					1	

Correlations for heavy-flavour	observables	at Z pole
--------------------------------	-------------	-----------

	$A^{0,c}_{\scriptscriptstyle\mathrm{FB}}$	$A^{0,b}_{\scriptscriptstyle\mathrm{FB}}$	A_c	A_b	R_c^0	R_b^0
$A^{0,c}_{\scriptscriptstyle\mathrm{FB}}$	1	0.15	0.04	-0.02	-0.06	0.07
$A^{0,b}_{\scriptscriptstyle \mathrm{FB}}$		1	0.01	0.06	0.04	-0.10
A_c			1	0.11	-0.06	0.04
A_b				1	0.04	-0.08
R_c^0					1	-0.18

Solvay workshop, May 29-31, 2013

Andreas Hoecker — The electroweak fit of the Standard Mode

& LEP

Parameter	Input value	Free in fit	Fit Result	Fit without M_H measurements	Fit without exp. input in line
$M_H \ [GeV]^\circ$	125.7 ± 0.4	yes	125.7 ± 0.4	94.1^{+25}_{-22}	94.1^{+25}_{-22}
M_W [GeV]	80.385 ± 0.015	-	$80.367^{+0.006}_{-0.007}$	$80.380^{+0.011}_{-0.012}$	80.360 ± 0.011
Γ_W [GeV]	2.085 ± 0.042	-	2.091 ± 0.001	2.092 ± 0.001	2.091 ± 0.001
M_Z [GeV]	91.1875 ± 0.0021	yes	91.1878 ± 0.0021	91.1874 ± 0.0021	91.1983 ± 0.0115
Γ_Z [GeV]	2.4952 ± 0.0023	-	2.4953 ± 0.0014	2.4957 ± 0.0015	2.4949 ± 0.0017
$\sigma_{ m had}^0$ [nb]	41.540 ± 0.037	-	41.480 ± 0.014	41.479 ± 0.014	41.472 ± 0.015
R^0_ℓ	20.767 ± 0.025	-	20.739 ± 0.017	20.741 ± 0.017	20.713 ± 0.026
$A_{ m FB}^{0,\ell}$	0.0171 ± 0.0010	-	$0.01627^{+0.0001}_{-0.0002}$	0.01637 ± 0.0002	0.01624 ± 0.0002
$A_\ell (\star)$	0.1499 ± 0.0018	-	$0.1473_{-0.0008}^{+0.0006}$	$0.1477^{+0.0009}_{-0.0008}$	-
$\sin^2 \theta_{\rm eff}^{\ell}(Q_{\rm FB})$	0.2324 ± 0.0012	-	$0.23148^{+0.00011}_{-0.00007}$	$0.23143^{+0.00010}_{-0.00012}$	0.23150 ± 0.00009
A_c	0.670 ± 0.027	-	$0.6681^{+0.00021}_{-0.00042}$	$0.6682^{+0.00042}_{-0.00035}$	0.6680 ± 0.00031
A_b	0.923 ± 0.020	-	$0.93464^{+0.00005}_{-0.00007}$	$0.93468^{+0.00008}_{-0.00007}$	0.93463 ± 0.00006
$A_{ m FB}^{0,c}$	0.0707 ± 0.0035	-	$0.0739^{+0.0003}_{-0.0005}$	$0.0740^{+0.0005}_{-0.0004}$	0.0738 ± 0.0004
$A_{ m FB}^{0,b}$	0.0992 ± 0.0016	-	$0.1032^{+0.0004}_{-0.0006}$	$0.1036^{+0.0007}_{-0.0006}$	0.1034 ± 0.0003
R_c^0	0.1721 ± 0.0030	-	$0.17222^{+0.00006}_{-0.00005}$	0.17223 ± 0.00006	0.17223 ± 0.00006
R_b^0	0.21629 ± 0.00066	-	0.21491 ± 0.00005	0.21492 ± 0.00005	0.21490 ± 0.00005
\overline{m}_c [GeV]	$1.27^{+0.07}_{-0.11}$	yes	$1.27^{+0.07}_{-0.11}$	$1.27^{+0.07}_{-0.11}$	-
\overline{m}_b [GeV]	$4.20^{+0.17}_{-0.07}$	yes	$4.20^{+0.17}_{-0.07}$	$4.20^{+0.17}_{-0.07}$	-
m_t [GeV]	173.20 ± 0.87	yes	173.49 ± 0.82	173.17 ± 0.86	$175.83^{+2.74}_{-2.42}$
$\Delta \alpha_{\rm had}^{(5)}(M_Z^2) ^{(\dagger \triangle)}$	2756 ± 10	yes	2755 ± 11	2757 ± 11	2716^{+49}_{-43}
$\alpha_s(M_Z^2)$	_	yes	$0.1188^{+0.0028}_{-0.0027}$	$0.1190^{+0.0028}_{-0.0027}$	0.1188 ± 0.0027
$\delta_{ m th} M_W$ [MeV]	$[-4, 4]_{\text{theo}}$	yes	4	4	_
$\delta_{\rm th} \sin^2 \! \theta_{\rm eff}^{\ell} ^{(\dagger)}$	$[-4.7, 4.7]_{\rm theo}$	yes	-1.4	4.7	-

^(o)Average of ATLAS ($M_H = 126.0 \pm 0.4 \text{ (stat)} \pm 0.4 \text{ (sys)}$) and CMS ($M_H = 125.3 \pm 0.4 \text{ (stat)} \pm 0.5 \text{ (sys)}$) measurements assuming no correlation of the systematic uncertainties. ^(*)Average of LEP ($A_\ell = 0.1465 \pm 0.0033$) and SLD ($A_\ell = 0.1513 \pm 0.0021$) measurements, used as two measurements in the fit. The fit w/o the LEP (SLD) measurement gives $A_\ell = 0.1474^{+0.0005}_{-0.0009} (A_\ell = 0.1467^{+0.0006}_{-0.0004})$. ^(†)In units of 10^{-5} . ^(Δ)Rescaled due to α_s dependency. http://gfitter.desy.de/Standard_Model/

Goodness-of-fit:

$$\chi^2_{\rm min}/n_{\rm dof} = 20.7/14 \rightarrow p$$
-value = $0.09_{\rm toy-MC}$

- large value of χ^2_{min} not due to M_H measurement
- Without M_H measurement: $\chi^2_{min}/n_{dof} = 19.3/13 \rightarrow p$ -value ~ 0.11

Pull values after fit:

- No pull value exceeds deviation of more than 3σ (consistency of SM)
- Small pulls for M_H, A_c, R⁰_c, m_c and m_b indicate that their input accuracies exceed the fit requirements
- Largest pulls in *b*-sector: A^{0,b}_{FB} and R⁰_b with 2.5σ and -2.1σ (little dependence on M_H)
- For comparison: R⁰_b using one fermionic loop calculation: 0.8σ

Experimental Input and

Scan of the $\Delta \chi 2$ profile versus M_H

- Blue line: full SM fit
- Grey band: fit without M_H measurement
- Fit without MH input gives $M_H = 94^{+25}_{-22}$ GeV
- Consistent within 1.3σ with measurement

Tension in M_H fit ?

- Determination of M_H removing all sensitive observables except the given one
- Tension (2.5σ from toy MC) between A^{0,b}_{FB}, A_l(SLD) and M_W

Indirect determination of the W boson mass

Scan of $\Delta \chi^2$ profile versus M_W

- *M_H* measurement allows for precise constraint of *M_W*
- Also shown SM fit with minimal input: M_Z , G_F , $\Delta \alpha_{had}(M_Z)$, $\alpha(M_Z)$, M_H and fermion masses
- Consistency between total fit and SM fit with minimal input

Fit results in the indirect determination :

$$\begin{split} \textbf{M}_{W} &= 80.3603 \pm 0.0056(m_{top}) \pm 0.0026(M_{Z}) \pm 0.0018(\Delta \alpha_{had}) \\ &\pm 0.0027(\alpha_{S}) \pm 0.0002(M_{H}) \pm 0.0040(\text{theo}) \text{ GeV} \end{split}$$

= 80.360 ± 0.011 (tot) GeV, more precise than experimental value

= 80.385 ± 0.015(exp) GeV [Tevatron/LEP: arXiv:1204.0042]

Effective weak mixing angle

Scan of $\Delta \chi^2$ profile versus $\sin^2 \theta^l_{eff}$

- All observables sensitive to sin² θ^l_{eff} removed from fit
- *M_H* measurement allows for precise constraint
- Also shown SM fit with minimal input

Fit results in the indirect determination :

10 $\Delta\chi^{2}$ G fitter SM fit w/o meas. sensitive to $\sin^2(\theta_{ac}^{l})$ 9 **3**σ SM fit w/o meas. sensitive to $\sin^2(\theta_{eff}^{l})$ and M_{u} meas. 8 SM fit with minimal input 7 LEP/SLD average [arXiv:0509008] 6 5 **2**σ 4 3 2 1σ 1 0 0.231 0.2312 0.2314 0.2316 0.2318 sin²(θ^l_{off})

 $\frac{\sin^2 \theta_{\text{eff}}^l}{\pm 0.000010} = 0.231496 \pm 0.000030(m_{\text{top}}) \pm 0.000015(M_Z) \pm 0.000035(\Delta \alpha_{\text{had}}) \\ \pm 0.000010(\alpha_S) \pm 0.000002(M_H) \pm 0.000047(\text{theo})$

- = 0.23150 ± 0.00010 (tot), more precise than LEP/SLD average
- = 0.23153 ± 0.00016(exp) [LEP/SLD: Phys Rept 427 (2006) 257]

Solvay workshop, May 29-31, 2013

Andreas Hoecker - The electroweak fit of the Standard Model

Top mass

Scan of $\Delta \chi^2$ profile versus m_{top}

Fit results in the indirect determination :

 $m_{top} = 175.8^{+2.7}_{-2.4}$ (tot) GeV = 173.2 ± 0.9 (exp) [Tevatron: arXiv:1207.0980]

W boson and top mass correlation – impressive consistency of the SM

Solvay workshop, May 29-31, 2013

Constraints on new physics

Parametrise contributions from vacuum polarisation

- Sensitivity to new physics
- SM reference chosen to be $M_{H,ref}$ = 126 GeV, $m_{t,ref}$ = 173 GeV
- S, T depend logarithmically on M_H
- Fit result:
 - $S = 0.03 \pm 0.10$ $T = 0.05 \pm 0.12$ $U = 0.03 \pm 0.10$

with large correlation between S and $\ensuremath{\mathcal{T}}$

- Stronger constraints from fit with U = 0
- S, T, U fit used to constrain new physics models (Little Higgs, 2HDM, SUSY, universal extra dimensions, Technicolor, ...)

Solvay workshop, May 29-31, 2013

Solvay workshop, May 29-31, 2013

Andreas Hoecker — The electroweak fit of the Standard Mode

A future linear collider could tremendously improve the precision of the electroweak observables

ILC with GigaZ

- *tt* threshold: obtain m_{top} from production cross section: $\delta(m_{top}) \sim 0.1$ GeV
- Z peak measurements
 - − Polarised beams, uncertainty $\delta A^{0,f}_{LR}$: 10⁻³ → 10⁻⁴ translates into $\delta \sin^2 \theta^l_{eff}$: 10⁻⁴ → 1.3×10⁻⁵
 - High statistics: $10^9 Z$ decays: $\delta R_l^0 : 2.5 \times 10^{-2} \rightarrow 4 \times 10^{-3}$
- WW threshold: from threshold scan: $\delta M_W = 15 \rightarrow 6 \text{ MeV}$
- Low energy data: $\Delta \alpha_{had}$: more precise cross section data for low energy ($\int s < 1.8 \text{ GeV}$) and around *cc* resonance (BES-III), improved α_s , improvements in theory: $1.0 \times 10^{-4} \rightarrow 0.5 \times 10^{-4}$

A future linear collider could tremendously improve the precision of the electroweak observables

Current theorey uncertainties

Solvay workshop, May 29-31, 2013

A future linear collider could tremendously improve the precision of the electroweak observables

80.46 M_w [GeV] $m_t \pm 1\sigma$ G fitter 80.44 w/o M_w and m, measurements present measurements 80.42 prospects for ILC/GigaZ $M_w \pm 1\sigma$ 80.4 80.38 80.36 80.34 80.32 80.3 L 160 165 170 175 180 185 m, [GeV] 80.46 M_w [GeV] $sin^2(\theta_{eff}^1) \pm 1\sigma$ w/o M_w and m, measurements 80.44 present measurements 80.42 prospects for ILC/GigaZ 80.4 80.38 $M_w \pm 1\sigma$ 80.36 80.34 80.32 el fitter 80.3 0.231 0.2311 0.2312 0.2313 0.2314 0.2315 0.2316 0.2317 0.2318 0.2319 sin²(θ^I_{eff})

Prospects for ILC with GigaZ

- Assume 50% of today's theoretical uncertainty (implies three-loop EW calculations), treated à la Rfit
- Fit features huge uncertainty reduction for indirect determinations
- Strong constraints on S, T, U

Summary

Knowledge of M_H over-constrains EW fit allowing a precise prediction of observables

SM Fit with *p*-value of 0.07

- Incentive to revisit Z → bb experimentally and theoretically !
- Incentive also to compute higher order contributions to other partial width observables

Significant improvement in SM prediction of key observables with M_H

- M_W : 28 \rightarrow 11 MeV
- $sin2\theta_{eff}^{l}$: 2.3 \rightarrow 1.0 \times 10⁻⁵
- $m_{\rm top}$: 6.2 \rightarrow 2.5 GeV

http://gfitter.desy.de/Standard Model

Improved accuracy sets benchmark for new direct measurements

Solvay workshop, May 29-31, 2013

Extra slides...

Solvay workshop, May 29-31, 2013

Parameter	Input value	Free in fit	Predicted fit result
M_H [GeV]	125.8 ± 0.1	yes	125.0^{+12}_{-10}
$M_W [\text{GeV}]$	80.378 ± 0.006		80.361 ± 0.005
Γ_W [GeV]	_	—	2.0910 ± 0.0004
M_Z [GeV]	91.1875 ± 0.0021	yes	91.1878 ± 0.0046
$\Gamma_Z \; [\text{GeV}]$	—	—	2.4953 ± 0.0003
$\sigma_{ m had}^0~[{ m nb}]$	—	_	41.479 ± 0.003
R_l^0	20.742 ± 0.003	—	_
$A_{ m FB}^{0,l}$	_	_	0.01622 ± 0.00002
A_{ℓ}	—	—	0.14706 ± 0.00010
$\sin^2 \theta_{ m eff}^\ell$	0.231385 ± 0.000013	_	0.23152 ± 0.00004
A_c	—	—	0.66791 ± 0.00005
A_b	—	—	0.93462 ± 0.00002
$A_{\mathrm{FB}}^{0,c}$	_	—	0.07367 ± 0.00006
$A_{\mathrm{FB}}^{ar{0},ar{b}}$	_	_	0.10308 ± 0.00007
R_c^0	_	_	0.17223 ± 0.00001
R_b^{0}	_	_	0.214746 ± 0.000004
\overline{m}_c [GeV]	$1.27^{+0.07}_{-0.11}$	yes	_
\overline{m}_b [GeV]	$4.20^{+0.17}_{-0.07}$	yes	_
$m_t [{ m GeV}]$	173.18 ± 0.10	yes	173.3 ± 1.2
$\Delta \alpha_{\rm had}^{(5)}(M_Z^2)$ (Δ)	2757.0 ± 4.7	yes	2757 ± 10
$\alpha_s(M_Z^2)$		yes	0.1190 ± 0.0005
$\delta_{\rm th} M_W [{ m MeV}]$	$[-2.0, 2.0]_{\text{theo}}$	yes	_
$\delta_{\rm th} \sin^2 \theta_{\rm eff}^{\ell} \ ^{(\triangle)}$	$[-1.5, 1.5]_{\rm theo}$	yes	_

 $^{(\triangle)}$ In units of 10⁻⁵. $^{(\bigtriangledown)}$ Rescaled due to α_s dependency.

Parametrising new physics contributions to electroweak precision observables

At low energies, BSM physics appears dominantly through vacuum polarisation

• Aka, oblique corrections

$$\begin{array}{c}
\mu \\
 \end{array} \\
 \hline A \\
 \hline B \\
 \hline B \\
 \hline B \\
 = i \Pi^{\mu\nu}_{AB=\{W,Z,\gamma\}}(q)$$

• Direct corrections (vertex, box, bremsstrahlung) generally suppressed by m_f/Λ

Oblique corrections reabsorbed into electroweak parameters $\Delta \rho$, $\Delta \kappa$, Δr

Electroweak fit sensitive to BSM physics through oblique corrections

 In direct competition with Higgs loop corrections

[Peskin-Takeuchi, Phys. Rev. D46, 381 (1992)]

$$O_{\text{meas}} = O_{\text{SM,ref}}(M_H, m_t) + c_{\text{S}}S + c_{\text{T}}T + c_UU$$

- **S**: (S+U) New Physics contributions to neutral (charged) currents
- T: Difference between neutral and charged current processes sensitive to weak isospin violation
- **U**: Constrained by M_W and Γ_W . Usually very small in NP models (often: U=0)

Parametrising new physics contributions to electroweak precision observables

At low energies, BSM physics appears dominantly through vacuum polarisation

Parametrising new physics contributions to electroweak precision observables

Definitions of *S*,*T*,*U*,*V*,*W*,*X* :

[STU parameters suffice when (q/M)2 small, so that linear approximation is accurate]

[Burgess et al., PLB 326, 276 (1994), PRD 49, 6115 (1994)]

$$\begin{split} \frac{\alpha \mathbf{S}}{4s_{W}^{2}c_{W}^{2}} &= \left[\frac{\delta \Pi_{ZZ}(M_{Z}^{2}) - \delta \Pi_{ZZ}(0)}{M_{Z}^{2}} \right] - \frac{\left(c_{W}^{2} - s_{W}^{2}\right)}{s_{W}c_{W}} \delta \Pi'_{Z\gamma}(0) - \delta \Pi'_{\gamma\gamma}(0) ,\\ \alpha T &= \frac{\delta \Pi_{WW}(0)}{M_{W}^{2}} - \frac{\delta \Pi_{ZZ}(0)}{M_{Z}^{2}} ,\\ \frac{\alpha U}{4s_{W}^{2}} &= \left[\frac{\delta \Pi_{WW}(M_{W}^{2}) - \delta \Pi_{WW}(0)}{M_{W}^{2}} \right] - c_{W}^{2} \left[\frac{\delta \Pi_{ZZ}(M_{Z}^{2}) - \delta \Pi_{ZZ}(0)}{M_{Z}^{2}} \right] \\ &- s_{W}^{2} \delta \Pi'_{\gamma\gamma}(0) - 2s_{W}c_{W} \delta \Pi'_{Z\gamma}(0) ,\\ \alpha V &= \delta \Pi'_{ZZ}(M_{Z}^{2}) - \left[\frac{\delta \Pi_{ZZ}(M_{Z}^{2}) - \delta \Pi_{ZZ}(0)}{M_{Z}^{2}} \right] ,\\ \alpha W &= \delta \Pi'_{WW}(M_{W}^{2}) - \left[\frac{\delta \Pi_{WW}(M_{W}^{2}) - \delta \Pi_{WW}(0)}{M_{W}^{2}} \right] ,\\ \alpha X &= -s_{W}c_{W} \left[\frac{\delta \Pi_{Z\gamma}(M_{Z}^{2})}{M_{Z}^{2}} - \delta \Pi'_{Z\gamma}(0) \right] . \end{split}$$

Parametrising new physics contributions to electroweak precision observables

Dependence of electroweak observables on S,T,U,V,W,X.

[The numerical values are based on $\alpha^{-1}(M_Z)$ = 128 and $\sin^2\theta_W$ = 0.23]

[Burgess et al., PLB 326, 276 (1994), PRD 49, 6115 (1994)]

 $\Gamma_{z} = (\Gamma_{z})_{SM} - 0.00961S + 0.0263T + 0.0194V - 0.0207X [GeV]$ $\Gamma_{hh} = (\Gamma_{hh})_{SM} - 0.00171S + 0.00416T + 0.00295V - 0.00369X [GeV]$ $\Gamma_{c+c} = (\Gamma_{c+c})_{SM} - 0.000192S + 0.000790T + 0.000653V - 0.000416X [GeV]$ $\Gamma_{\text{had}} = (\Gamma_{\text{had}})_{\text{SM}} - 0.00901\text{S} + 0.02007 + 0.0136V - 0.0195X [GeV]$ $A_{FB(u)} = (A_{FB(u)})_{SM} - 0.00677S + 0.00479T - 0.0146X$ $A_{\text{pol}(\tau)} = (A_{\text{pol}(\tau)})_{\text{SM}} - 0.0284S + 0.02017 - 0.0613X$ $A_{e(P\tau)} = (A_{e(P\tau)})_{SM} - 0.0284S + 0.0201T - 0.0613X$ $A_{\text{FB}(b)} = (A_{\text{FB}(b)})_{\text{SM}} - 0.0188S + 0.0131T - 0.0406X$ $A_{FB(c)} = (A_{FB(c)})_{SM} - 0.0147S + 0.0104T - 0.03175X$ $A_{\rm IP} = (A_{\rm IP})_{\rm SM} - 0.0284S + 0.0201T - 0.0613X$ $M_{W}^2 = (M_{W}^2)_{\rm SM} (1 - 0.00723S + 0.0111T + 0.00849U)$ $\Gamma_{W} = (\Gamma_{W})_{SM} (1 - 0.00723S - 0.00333T + 0.00849U + 0.00781W)$ $g_i^2 = (g_i^2)_{\rm SM} - 0.00269S + 0.00663T$ $g_{P}^{2} = (g_{P}^{2})_{SM} + 0.000937S - 0.000192T$ $g_{V,(ve \to ve)}^{e} = (g_{V}^{e})_{SM} + 0.00723S - 0.00541T$ $g^{e}_{A,(ve \to ve)} = (g^{e}_{A})_{SM} - 0.00395T$ $Q_{W}(^{133}_{55}Cs) = Q_{W}(Cs)_{SM} - 0.795S - 0.0116T$

ILC with GigaZ Prospects for *M_H* fit at ILC with GigaZ

Central values of input observables chosen to agree with their SM prediction for a Higgs mass of 126 GeV (left) and 94 GeV (right), respectively.

[A. Freitas et al., Status: Moriond QCD, 2013 The branching ratio R_{h}^{0} : partial decay width of Z \rightarrow bb to Z \rightarrow qq

Freitas et al: full 2-loop calculation of $Z \rightarrow bb$

New R⁰_b calculation

- Contribution of same terms as in the calculation of $sin^2 \theta^{bb}_{eff}$ \rightarrow cross-check of two results found good agreement
- Two-loop corrections comparable to experimental uncertainty (6.6×10^{-4})

	1-loop EW and QCD correction to FSR	2-loop EW correction	2-loop EW and 2+3-loop QCD correction to FSR	1+2-loop QCD correction to gauge boson self-energies
$M_{ m H}$ [GeV]	$\begin{array}{c} \mathcal{O}(\alpha) + \mathrm{FSR}_{\mathrm{1-loop}} \\ [10^{-3}] \end{array}$	$\begin{array}{c} \mathcal{O}(\alpha_{\rm ferm}^2) \\ [10^{-4}] \end{array}$	$\begin{array}{c} \mathcal{O}(\alpha_{\rm ferm}^2) + {\rm FSR}_{>1-\rm loop} \\ [10^{-4}] \end{array}$	$\begin{array}{c} \mathcal{O}(\alpha\alpha_{\rm s},\alpha\alpha_{\rm s}^2)\\ [10^{-4}] \end{array}$
100	-3.632	-6.569	-9.333	-0.404
200	-3.651	-6.573	-9.332	-0.404
400	-3.675	-6.581	-9.331	-0.404

Higgs couplings in the EW fit

- In latest ATLAS H→γγ, 2.3σ deviation seen from SM μ (≡1.0)
- Interpret.: $H \rightarrow VV$ couplings scaled with c_V

From: Falkowski et al, arXiv:1303.1812

- Modified Higgs couplings can be constrained by EW fit through extended STU formalism.
- Result of c_V driven by limit on T parameter.
 - Tree-level relation: $\rho_0 = \frac{M_{W_0}^2}{M_{\pi}^2 c_{\pi\pi}^2} = 1 + \alpha T$

$$\alpha T \approx \frac{3g_Y^2}{32\pi^2} \left(c_V^2 - 1\right) \log(\Lambda/m_Z)$$

- Reminder: T = 0.05 ± 0.12 (Gfitter)
- EW-fit Falkowski et al: $c_V \simeq 1.08 \pm 0.07$
 - Blue dashed: c_V from μ 's, black: comb. w/ EW

0.7

0.9

Falkowski et al, arXiv:1303.1812

1.0

1.1

0.8

1.2

1.3

 C_{V}