

arXiv:1407.3792 (subm. to EPJC)

The global electroweak fit at NNLO Prospects for LHC and ILC

Outline:

- ✓ What's new in the Electroweak Fit
- Prospects for LHC and ILC
- ? Higgs couplings

The predictive power of the SM

- As the Z boson couples to all fermions, it is ideal to measure & study both the electroweak and strong interactions.
- Tree level relations for Z→ff

•
$$i\bar{f}\gamma^{\mu}\left(g_{V,f}-g_{A,f}\gamma_{5}\right)fZ_{\mu}$$
 www.

Prediction EWSB at tree-level:

$$\frac{M_W^2}{M_Z^2 \cos \theta_W^2} = 1$$

- The impact of loop corrections
 - Absorbed into EW form factors: ρ, κ, Δr
 - Effective couplings at the Z-pole
 - Quadraticly dependent on m_t, *logarithmic* dependence on M_H

$$g_{V,f} = \sqrt{
ho_Z^f} \left(I_3^f - 2Q^f \sin^2 heta_{ ext{eff}}^f
ight)$$
 $g_{A,f} = \sqrt{
ho_Z^f} I_3^f$
 $\sin^2 heta_{ ext{eff}}^f = \kappa_Z^f \sin^2 heta_W$
 $M_W^2 = \frac{M_Z^2}{2} \left(1 + \sqrt{1 - \frac{\sqrt{8\pi}lpha(1 + \Delta r)}{G_F M_Z^2}}
ight)$

The SM fit after the Higgs

After the Higgs:

- All free parameters of SM fit are known ⇒ fit now fully overconstrained.
- The electroweak observables can be unambiguously predicted at loop level.
- Paradigm shift for EW fit:
 From Higgs mass prediction ⇒ Powerful predictions of key observables now possible (much better than w/o M_H)

Can now test for:

- ✓ Self-consistency of SM.
- ✓ Possible contributions from BSM models.

The SM fit with Gfitter, including the Higgs

- Discovery of Higgs-like boson at LHC
 - Cross section, production rate time branching ratios, spin, parity sofar compatible with SM Higgs boson.
- This talk: assume boson is SM Higgs.
- Use in EW fit: M_H = 125.14 ± 0.24 GeV
 - ATLAS: $M_H = 125.36 \pm 0.37 \pm 0.18 \text{ GeV}$ CMS: $M_H = 125.03 \pm 0.27 \pm 0.14 \text{ GeV}$ [arXiv:1406.3827, CMS-PAS-HIG-14-009]
- Change in average between fully uncorrelated and fully correlated systematic uncertainties is minor: δM_H: 0.24 → 0.32 GeV
 - EW fit unaffected at this level of precision

Latest averages for M_W and m_{top}

Top mass WA from: arXiv:1403.4427

latest D0 arXiv:1405.1756:

 $174.98 \pm 0.76 \text{ GeV/c}^2$

Electroweak precision tests: Theory at NNLO

 $M_W^2 \Big|_{\text{tree-level}} = \frac{M_Z^2}{2} \cdot \left(1 + \sqrt{1 - \frac{\sqrt{8\pi\alpha}}{G_E M_Z^2}} \right)$

- Radiative corrections are important!
- E.g. consider tree-level EW unification relation:
 - This predicts: $M_W = (79.964 \pm 0.005) \text{ GeV}$
 - Experiment: $M_W = (80.385 \pm 0.015) \text{ GeV}$
- Without loop corrections: shift of 400 MeV, 27σ discrepancy!

- 1. Experimental precision (<1%), better than typical loop factor (α≈1/137)
 - → Requires radiative corrections at 2-loop level.
- 2. Before Higgs discovery: uncertainty on M_H largest uncertainty in EW fit.
 - → After: inclusion of all relevant theoretical uncertainties.

(Part of focus of this talk ...)

Electroweak precision tests: Theory at NNLO

 $M_W^2 \Big|_{\text{tree-level}} = \frac{M_Z^2}{2} \cdot \left[1 + \sqrt{1 - \frac{\sqrt{8\pi\alpha}}{G_E M_Z^2}} \right]$

- Radiative corrections are important!
 - E.g. consider tree-level EW unification relation:
 - This predicts: $M_W = (79.964 \pm 0.005) \text{ GeV}$
 - Experiment: $M_W = (80.385 \pm 0.015) \text{ GeV}$
- Without loop corrections: shift of 400 MeV, 27σ discrepancy!
- In EW fit with Gfitter we use state-of-the-art calculations:
 - sin²θ/eff Effective weak mixing angle [M. Awramik et al., JHEP 11, 048 (2006), M. Awramik et al., Nucl.Phys.B813:174-187 (2009)]
 - Full two-loop + leading beyond-two-loop form factor corrections
 - *M_W* Mass of the W boson [M. Awramik et al., Phys. Rev. D69, 053006 (2004)]
 - Full two-loop + leading beyond-two-loop + 4-loop QCD correction New [Kuhn et al., hep-hp/0504055,0605201,0606232]
 - Γ_{had} QCD Radiator functions at N³LO [P. A. Baikov et al., PRL108, 222003 (2012)]
 - N³LO prediction of the hadronic cross section
 - Γ_i Partial Z decay widths and BRs at NNLO New! full fermionic [A. Freitas, JHEP04, 070 (2014)] 2-loop
- New: all EWPOs^(*) now described at 2-loop level or better!

calc.

Theory uncertainties from unknown HO terms

Obsamiable

Most important observables:

Observable	Exp. error	Theo. error
M_W	15 MeV	4 MeV
$\sin^2 \theta_{ m eff}^l$	$1.6\cdot10^{-4}$	$0.5\cdot 10^{-4}$
Γ_Z	2.3 MeV	0.5 MeV
Γ_Z $\sigma_{\rm had}^0 = \sigma[e^+e^- \to Z \to \text{had.}]$		0.5 MeV 6 pb 1.5 · 10 ⁻⁴

0.76 GeV

Theory uncertainties accounted for in EW fit (w/ Gauss constraints):

Two nuisance pars in EW fit for theoretical uncertainties:

 m_t

• δM_W (4 MeV), $\delta \sin^2 \theta _{\text{eff}}^{\dagger}$ (4.7x10⁻⁵)

 $\leq O(1) \text{ GeV}$

Newly included:

- Full fermionic 2-loop corrections of partial Z decay widths (A. Freitas)
 - 6 corresponding nuisance parameters. ($\delta\Gamma_Z = 0.5 \text{ MeV}$)
- Γ_{had} QCD Adler functions at N³LO
 - 2 nuisance parameters.
- Top quark mass: conversion from measurement to MS-bar mass
 - Agnostic value used here: $\delta_{theo} m_t = 0.5 \text{ GeV}$. (more later)

Electroweak Fit – Experimental inputs

Tevatron

LHC

- Latest experimental inputs:
 - Z-pole observables: from LEP / SLC [ADLO+SLD, Phys. Rept. 427, 257 (2006)]
 - M_W and Γ_W from LEP/Tevatron [arXiv:1204.0042, arXiv:1302.3415]
 - m_{top} latest avg from Tevatron+LHC [arXiv:1403.4427]
 - m_c, m_b world averages (PDG) [PDG, J. Phys. G33,1 (2006)]
 - $\Delta \alpha_{\rm had}^{(5)}(M_7^2)$ including $\alpha_{\rm S}$ dependency [Davier et al., EPJC 71, 1515 (2011)]
 - M_H from LHC [arXiv:1406.3827, CMS-PAS-HIG-14-009]
 - 7 (+10) free fit parameters:
 - $M_{H}, M_{Z}, \alpha_{S}(M_{Z}^{2}), \Delta\alpha_{had}^{(5)}(M_{Z}^{2}),$
 - m_t , m_c , m_b
 - 10 theory nuisance parameters
 - e.g. δM_W (4 MeV), $\delta \sin^2 \theta_{eff}$ (4.7x10⁻⁵)

 M_W [GeV] Γ_W [GeV]

 $M_H [\text{GeV}]^{(\circ)}$

 M_Z [GeV]

 Γ_Z [GeV]

 $\sigma_{\rm had}^0$ [nb]

 A_c

 A_{b}

 $A_{
m FB}^{0,c}$

 $A_{
m FB}^{0,b}$

 R_c^0

 R_b^0

 \overline{m}_c [GeV]

 \overline{m}_b [GeV]

 80.385 ± 0.015 2.085 ± 0.042

 91.1875 ± 0.0021 2.4952 ± 0.0023

 125.14 ± 0.24

LEP 41.540 ± 0.037 20.767 ± 0.025

 $A_{
m FB}^{0,\ell}$ 0.0171 ± 0.0010 A_{ℓ} (*) 0.1499 ± 0.0018 $\sin^2 \theta_{\mathrm{eff}}^{\ell}(Q_{\mathrm{FB}})$ 0.2324 ± 0.0012

SLC

SLC

 0.670 ± 0.027 0.923 ± 0.020 0.0707 ± 0.0035

 0.0992 ± 0.0016

 0.1721 ± 0.0030

 0.21629 ± 0.00066

 $1.27^{\,+0.07}_{\,-0.11}$

 $4.20^{\,+0.17}_{\,-0.07}$

 173.34 ± 0.76

LEP

 m_t [GeV] $\Delta \alpha_{\rm had}^{(5)}(M_Z^2)^{(\dagger \triangle)}$

 2757 ± 10

Tevatron + LHC

Electroweak Fit – SM Fit Results

- Results drawn as pull values:

 → deviations to the
 indirect determinations,
 divided by total error.
- Total error: error of direct measurement plus error from indirect determination.
- Black: direct measurement (data)
- Orange: full fit
- Light-blue: fit excluding input from the row
- The prediction (light blue) is often more precise than the measurement!

Electroweak Fit – SM Fit Results

- Results drawn as pull values:

 → deviations to the
 indirect determinations,
 divided by total error.
- Total error: error of direct measurement plus error from indirect determination.
- Black: direct measurement (data)
- Orange: full fit
- Light-blue: fit excluding input from the row
- The prediction (light blue) is often more precise than the measurement!

Electroweak Fit – SM Fit Results

- No individual value exceeds 3σ
- Largest deviations in b-sector: A^{0,b}_{FR} with 2.5σ
 - → largest contribution to χ²
- Small pulls for M_H , M_Z , $\Delta\alpha_{had}^{(5)}(M_Z^2)$, \overline{m}_c , \overline{m}_b indicate that input accuracies exceed fit requirements
- Goodness of fit p-value:
 - χ^2_{min} = 17.8 \rightarrow Prob(χ^2_{min} , 14) = 21%
 - Pseudo experiments: 21 ± 2 (theo) %
- Only small changes from switching between 1 and 2-loop calc. for partial Z widths and small M_W correction.
 - $\chi^2_{min}(1-loop Z width) = 18.0$
 - χ^2_{min} (no M_W correction) = 17.4
 - χ^2_{min} (no extra theory errors) = 18.2

Higgs results of the EW fit

- Scan of $\Delta \chi^2$ profile versus M_H
 - Grey band: fit w/o M_H measurement _{3.5}
 - Blue line: full SM fit, with M_H meas.
 - Fit w/o M_H measurement gives: $M_{H} = 93^{+25}_{-21} \text{ GeV}$
 - Consistent at 1.3σ with LHC measurements.

- Bottom plot: impact of other most sensitive Higgs observables
 - Determination of M_H removing all sensitive observables except the given one.
 - Known tension (2.5σ) between A_I(SLD), A^{0,b}_{FB}, and M_w clearly visible.

fit below only includes the given observable

Prediction for $\alpha_s(M_7)$ from Z \rightarrow hadrons

- Scan of Δχ² versus α_s
 - Also shown: SM fit with minimal inputs:
 M_Z, G_F, Δα_{had}⁽⁵⁾(M_Z), α_s(M_Z)
 M_H, and fermion masses
- Determination of α_s at full N²LO and partial N³LO.
 - Most sensitive through total hadronic crosssection σ⁰_{had} and partial leptonic width R⁰₁

$$lpha_s(M_Z^2) = 0.1196 \pm 0.0028_{
m exp} \pm \boxed{0.0006_{\delta_{
m theo}\mathcal{R}_{V,A}} \pm 0.0006_{\delta_{
m theo}\Gamma_i} \pm 0.0002_{\delta_{
m theo}\sigma_{
m had}^0}}$$

$$= 0.1196 \pm 0.0030_{
m tot} \;, \qquad \textit{Most affected by new theory uncertainties}$$

$$\textit{Before: } \delta_{\textit{theo}} = \textit{0.0001}$$

- In good agreement with value from τ decays, at N³LO, and with WA.
 - (Improvements in precision only expected with ILC/GigaZ. See later.)

Indirect determination of W mass

G fitter

- Scan of $\Delta \chi^2$ profile versus M_W
 - Also shown: SM fit with minimal inputs: M_Z , G_F , $\Delta \alpha_{had}^{(5)}(M_Z)$, $\alpha_s(M_Z)$, M_H, and fermion masses
 - Good consistency between total fit and SM w/ minimal inputs
- M_H measurement allows for precise constraint on M_w

SM fit wow Mw measurement

SM fit with minimal input

SM fit w/p M and M measurement

M_w world average [arXiv:1204.0042]

- $80.358 \pm 0.008_{\rm tot} \; {\rm GeV}$.
- More precise estimate of M_W than the direct measurements!
 - Uncertainty on world average measurement: 15 MeV

Obtained with simple error propagation

Indirect effective weak mixing angle

- Right: scan of Δχ²
 profile versus sin²θ¹
 eff
 - All sensitive measurements removed from the SM fit.
 - Also shown: SM fit with minimal inputs
- M_H measurement allows for very precise constraint on sin²θ^I_{eff}

Fit result for indirect determination of $\sin^2\theta_{\text{eff}}^{\text{l}}$:

$$\sin^{2}\theta_{\text{eff}}^{\ell} = 0.231488 \pm 0.000024_{m_{t}} \pm 0.000016_{\delta_{\text{theo}}m_{t}} \pm 0.000015_{M_{Z}} \pm 0.000035_{\Delta\alpha_{\text{had}}} \pm 0.000001_{M_{H}} \pm 0.0000047_{\delta_{\text{theo}}\sin^{2}\theta_{\text{eff}}^{f}},$$

$$= 0.23149 \pm 0.00007_{\text{tot}},$$

- More precise than direct determination (from LEP/SLD)!
 - Uncertainty on LEP/SLD average: 1.6x10⁻⁴

Obtained with simple error propagation

State of the SM: W versus top mass

- Scan of M_W vs m_t, with the direct measurements excluded from the fit.
- Results from Higgs measurement significantly reduces allowed indirect parameter space → corners the SM!

Observed agreement demonstrates impressive consistency of the SM!

State of the SM: W mass versus sin²θ_{eff}

- Scan of M_W vs $\sin^2\theta_{eff}^I$, with direct measurements excluded from the fit.
- Again, significant reduction allowed indirect parameter space from Higgs mass measurement.

- M_W and sin²θ^l_{eff} have become the sensitive probes of new physics!
 - Reason: both are 'tree-level' SM predictions.

Theoretical uncertainty on m_{top}

See talk: Hiroshi Yokoya

- δ_{theo} m_t : unc. on conversion measured top mass to MS-bar mass
 - Sources: ambiguity top mass definition, fragmentation process, pole→MS conv.
 - Predictions for δ_{theo} m_t: between 0.25 0.9 GeV or greater. [Moch etal, aX:1405.4781, Mangano: TOP'12, Buckley etal, aX:1101.2599, Juste etal: aX:1310.0799]
 - δ_{theo} m_t varied here between 0 and 1.5 GeV, in steps of 0.5 GeV.
- Better assessment of δ_{theo} m_t of relevance for the EW fit.

Constraints on BSM models

- If energy scale of NP is high, BSM physics appears dominantly through vacuum polarization corrections.
- Described with STU parametrization [Peskin and Takeuchi, Phys. Rev. D46, 1 (1991)]
- SM: M_H = 125 GeV, m_t = 173 GeV
 - This defines (S,T,U) = (0,0,0)
- S, T depend logarithmically on M_H
- Fit result (with U floating):

Stronger constraints with U=0.

Also results for Z→bb
 correction (see backup)

- No indication for new physics.
- Can now use this constrain 4th gen, Ex-Dim, T-C, Higgs couplings...

See talk: Kiwoon Choi

Two prospects scenarios: LHC, ILC/GigaZ

Prospects of EW fit tested for two scenarios:

- 1. LHC Phase-1 = before HL upgrade
- 2. ILC with GigaZ(*)

(*) GigaZ:

- Operation of ILC at lower energies like Z-pole or WW threshold.
 - Allows to perform precision measurements of EW sector of the SM.
- At Z-pole, several billion Z's can be studied within ~1-2 months.
 - Physics of LEP1 and SLC can be revisited with few days of data.

In following studies: central values of input measurements adjusted to $M_H = 125 \text{ GeV}$.

(Except where indicated.)

Prospects of EW fit for: ILC with Giga Z

Future Linear Collider can improve precision of EWPO's tremendously.

- WW threshold scan + kinematic reconstruction, to obtain M_W
 - From threshold scan: δM_W: 15 → 5 MeV
- ttbar threshold scan, to obtain m_t
 - Obtain m_t indirectly from production cross section: $\delta m_t : 0.8 \rightarrow 0.1 \text{ GeV}$
 - Dominated by conversion from threshold to MSbar mass.
- Z pole measurements
 - High statistics: 10^9 Z decays: δR^0_{lep} : $2.5 \cdot 10^{-2} \rightarrow 4 \cdot 10^{-3}$
 - With polarized beams, uncertainty on $\delta A^{0,f}_{LR}$: $10^{-3} \rightarrow 10^{-4}$, which translates to $\delta \sin^2 \theta^l_{eff}$: $1.6 \cdot 10^{-4} \rightarrow 1.3 \cdot 10^{-5}$
- $H \rightarrow ZZ$ and $H \rightarrow WW$ couplings: measured at 1% precision.

ILC prospects: from ILC TDR (Vol-2).

Prospects of EW fit for: LHC Phase-1

LHC Phase-1 (300/fb)

- W mass measurement : δM_W : 15 \rightarrow 8 MeV
- Final top mass measurement m_t : δm_t : $0.8 \rightarrow 0.6$ GeV
- $H \rightarrow ZZ$ and $H \rightarrow WW$ couplings: measured at 3% precision.

LHC prospects: possibly optimistic scenario, but not impossible.

Prospects of EW fit

LHC Phase-1 (300/fb)

- W mass measurement : δM_W : 15 \rightarrow 8 MeV
- Final top mass measurement m_t : δm_t : $0.8 \rightarrow 0.6$ GeV
- $H \rightarrow ZZ$ and $H \rightarrow WW$ couplings: measured at 3% precision.

For both LHC and ILC:

- Low-energy data results to improve $\Delta \alpha_{had}$:
 - ISR-based (BABAR), KLOE-II, VEPP-2000 (at energy below cc resonance), and BESIII e⁺e⁻ cross-section measurements (around cc resonance).
 - Plus: improved α_s (from reliable Lattice predictions): $\Delta\alpha_{had}$: $10^{-4} \rightarrow 5 \cdot 10^{-5}$
- Assuming ~25% of today's theoretical uncertainties on M_W and sin²θ^leff
 - Implies ambitions three-loop electroweak calculations!
 - δM_W (4 \rightarrow 1 MeV), $\delta sin^2\theta^{-1}_{eff}$ (4.7x10⁻⁵ \rightarrow 1x10⁻⁵) (from Snowmass report)
 - Partial Z decay widths at 3-loop level: factor 4 improvement
 - LHC: top quark mass theo uncertainty: 0.50 → 0.25 GeV

Prospects of EW fit

- Logarithmic dependency on M_H → cannot compete with direct M_H meas.
- Indirect prediction M_H dominated by experimental uncertainties.
 - Present: $\sigma(M_H) = {}^{+31}_{-26} (exp) {}^{+10}_{-8} (theo) GeV$
 - LHC: $\sigma(M_H) = {}^{+20}_{-18} \text{ (exp) } {}^{+3.9}_{-3.8} \text{ (theo) GeV}$
 - ILC: $\sigma(M_H) = {}^{+6.9}_{-6.6} \text{ (exp)} {}^{+2.5}_{-2.3} \text{ (theo) GeV}$
- If EWP-data central values unchanged, i.e. keep favoring low value of Higgs mass (93 GeV), ~5σ discrepancy with measured Higgs mass.

Prospects of EW fit

- Huge reduction of uncertainty on indirect determinations of m_t , m_W , and $\sin^2\theta_{eff}^I$, by a factor of 3 or more.
- Assuming central values of m_t and M_W do not change, (at ILC) a deviation between the SM prediction and the direct measurements would be prominently visible.

Impact of individual uncertainties

Breakdown of individual contributions to errors of M_W and sin²θ^leff

					Experimental uncertainty source $[\pm 1\sigma]$				$\lfloor \sigma floor$	
Parameter	$\delta_{ m meas}$	$\delta_{ m fit}^{ m tot}$	$\delta_{ m fit}^{ m theo}$	$\delta_{ m fit}^{ m exp}$	δM_W	δM_Z	δm_t	$\delta \sin^2 \theta_{ ext{eff}}^f$	$\delta\Delta\alpha_{ m had}$	$\delta \alpha_S$
			Present uncertainties							
M_W [MeV]	15	7.8	5.0	6.0	_	2.5	4.3	5.1	1.6	2.5
$\sin^2 \theta_{\rm eff}^{\ell}$ (°)	16	6.6	4.9	4.5	3.7	1.2	2.0	_	3.4	1.2
					LHC prosp	pects				
M_W [MeV]	8	5.5	1.8	5.2	_	2.5	3.5	4.8	0.8	2.6
$\sin^2 \theta_{\mathrm{eff}}^{\ell}$ (°)	16	3.0	1.1	2.8	2.5	1.1	1.4	_	1.5	0.9
m_t [GeV]	0.6	1.5	0.2	1.5	1.3	0.4	_	1.2	0.2	0.5
	ILC/GigaZ prospects									
M_W [MeV]	5	2.3	1.3	1.9	_	1.7	0.3	1.3	0.7	0.3
$\sin^2 \theta_{\rm eff}^{\ell}$ (°)	1.3	2.3	1.0	2.0	1.7	1.2	0.2	_	1.5	0.1
M_Z [MeV]	2.1	2.7	1.0	2.6	2.5	_	0.4	1.3	1.9	0.2

 $^{^{(\}circ)}$ In units of 10^{-5} .

- M_W and $\sin^2\theta^I_{eff}$ are sensitive probes of new physics! For all scenarios.
- At ILC/GigaZ, precision of M_Z will become important again.

BSM prospects of **EW** fit

- For STU parameters, improvement of factor of >3 is possible at ILC.
- Again, at ILC a deviation between the SM predictions and direct measurements would be prominently visible.
- Competitive results between EW fit and Higgs coupling measurements!
 - (At level of 1%.)

Modified Higgs couplings

- Study of potential deviations of Higgs couplings from SM.
- BSM modeled as extension of SM through effective Lagrangian.
 - Consider leading corrections only.
- Model considered here:
 - Scaling of Higgs-vector boson (κ_V)
 and Higgs-fermion couplings (κ_F),
 with no invisible/undetectable widths.
 - (Custodial symmetry is assumed.)
 - "Kappa parametrization"
- Main effect on EWPO due to modified Higgs coupling to gauge bosons (κ_V).
 - Espinosa et al [arXiv:1202.3697], Falkowski et al [arXiv:1303.1812], etc.

$$S = \frac{1}{12\pi}(1- \overbrace{\kappa_V^2}^2) \log \left(\frac{\Lambda^2}{M_H^2}\right) \,, \quad T = -\frac{3}{16\pi c_W^2}(1- \overbrace{\kappa_V^2}^2) \log \left(\frac{\Lambda^2}{M_H^2}\right) \,, \quad \Lambda = \frac{\lambda}{\sqrt{|1- \kappa_V^2|^2}} \log \left(\frac{\Lambda^2}{M_H^2}\right) \,.$$

Reproduction of ATLAS and CMS results

Approximate reproduction of ATLAS/CMS results within limited public-info available.

Higgs coupling results

- Private LHC combination:
 - $\kappa_V = 1.026^{+0.043}_{-0.043}$
 - $\kappa_F = 0.88^{+0.10}_{-0.09}$

- Result from stand-alone EW fit:
 - $\kappa_V = 1.03 \pm 0.02$ (using $\lambda = 3$ TeV)
 - Implies NP-scale of Λ ≥ 13 TeV.

- Some dependency for κ_V in central value [1.02-1.04] and error [0.02-0.03] on cut-off scale λ [1-10 TeV].
- 1. EW fit sofar more precise result for κ_{V} than current LHC experiments.
- 2. EW fit has positive deviation of κ_V from 1.0.
 - (Many BSM models: κ_V < 1)

Conclusion and Today's prospects

- Including M_H measurement, for first time SM is fully over-constrained!
 - M_H consistent at 1.3σ with indirect prediction from EW fit.
 - p-Value of global electroweak fit of SM: 21% (pseudo-experiments)
- New: N²LO calcs and theo. uncertainties for all relevant observables.
 - δ_{theo} m_t starting to become relevant.
- Knowledge of M_H dramatically improves SM prediction of key observables
 - M_W (28 \rightarrow 11 MeV), $\sin^2\theta^{l}_{eff}$ (2.3x10⁻⁵ \rightarrow 1.0x10⁻⁵), m_t (6.2 \rightarrow 2.5 GeV)
- Improved accuracies set benchmark for new direct measurements!
- δM_W (indirect) = 8 MeV
 - Large contributions to δM_W from top and unknown higher-order EW corrections

Thanks!

Global EW fits: a long history

- Huge amount of pioneering work by many!
 - Needed to understand importance of loop corrections
 - Important observables (now) known at least at two-loop order, sometimes more.
 - High-precision Standard Model (SM) predictions and measurements required
 - First from LEP/SLC, then Tevatron, now LHC.

- Top mass predictions from loop effects available since ~1990.
 - Official LEPEW fit since 1993.
- The EW fits have always been able to predict the top mass correctly!

Global EW fits: many fit codes

- EW fits performed by many groups in past and present.
 - D. Bardinet al. (ZFITTER), G. Passarino et al. (TOPAZ0), LEPEW WG (M. Grünewald, K. Mönig et al.), J. Erler (GAP), Bayesian fit (M. Ciuchini, L. Silvestrini et al.), etc ...
 - · Important results obtained!
- Several groups pursuing global beyond-SM fits, especially SUSY.
- Global SM fits also used at lower energies [CKM-matrix].

- Fits of the different groups agree very well.
- Some differences in treatment of theory errors, which just start to matter.
 - E.g. theoretical and experimental errors added linearly (= conservative) or quadratically.
 - In following: theoretical errors treated as Gaussian (quadratic addition.)

Two prospects scenarios: LHC, ILC/GigaZ

• Uncertainty estimates used:

	Experimental input $[\pm 1\sigma_{\rm exp}]$				
Parameter	Present	LHC	${\rm ILC/GigaZ}$		
M_{H} [GeV]	0.4	< 0.1	< 0.1		
M_W [MeV]	15	8	5		
M_Z [MeV]	2.1	2.1	2.1		
m_t [GeV]	0.8	0.6	0.1		
$\sin^2 \theta_{\mathrm{eff}}^{\ell} \ [10^{-5}]$	16	16	1.3		
$\Delta\alpha_{\rm had}^5(M_Z^2)~[10^{-5}]$	10	4.7	4.7		
R_l^0 [10 ⁻³]	25	25	4		
$\alpha_S(M_Z^2) \ [10^{-4}]$	_	_	_		
$S _{U=0}$	_	_	_		
$T _{U=0}$	_	_	_		
$\kappa_V \ (\lambda = 3 \text{TeV})$	0.05	0.03	0.01		

Experimental input [+1]

- ILC prospects from: ILC TDR (Vol-2).
- Theoretical uncertainty estimates from recent Snowmass report
- Central values of input measurements adjusted to M_H = 126 GeV.

Summary of indirect predictions

	Exper	imentali	input $[\pm 1\sigma_{\rm exp}]$	Indirect determination $[\pm 1\sigma_{\rm exp}, \pm 1\sigma_{\rm theo}]$			
Parameter	Present	LHC	$\rm ILC/GigaZ$	Present	LHC	ILC/GigaZ	
M_H [GeV]	0.4	< 0.1	< 0.1	$^{+31}_{-26}$, $^{+10}_{-8}$	$^{+20}_{-18}$, $^{+3.9}_{-3.2}$	$^{+6.9}_{-6.6}$, $^{+2.5}_{-2.3}$	
M_W [MeV]	15	8	5	6.0, 5.0	5.2, 1.8	1.9, 1.3	
M_Z [MeV]	2.1	2.1	2.1	11, 4	7.0, 1.4	2.6, 1.0	
m_t [GeV]	0.8	0.6	0.1	2.4, 0.6	1.5, 0.2	$0.7, \ 0.2$	
$\sin^2 \theta_{\text{eff}}^{\ell} [10^{-5}]$	16	16	1.3	$4.5, \ 4.9$	2.8, 1.1	2.0, 1.0	
$\Delta \alpha_{\mathrm{had}}^5(M_Z^2)$ [10 ⁻⁵]	10	4.7	4.7	42, 13	36, 6	5.6, 3.0	
R_l^0 [10 ⁻³]	25	25	4	-	_	_	
$\alpha_S(M_Z^2) \ [10^{-4}]$	_	_	_	40, 10	39, 7	6.4, 6.9	
$S _{U=0}$	_	_	_	0.094, 0.027	0.086, 0.006	0.017, 0.006	
$T _{U=0}$	_	_	_	$0.083,\ 0.023$	0.064, 0.005	$0.022,\ 0.005$	
$\kappa_V \ (\lambda = 3 \text{TeV})$	0.05	0.03	0.01	0.02	0.02	0.01	

• M_W and $\sin^2\theta^l_{eff}$ are (and will be) sensitive probes of new physics!

Max Baak (CERN)

Indirect determination of top mass

- Shown: scan of Δχ² profile versus m_t (without m_t measurement)
 - M_H measurement allows for significant better constraint of m_t
 - Indirect determination consistent with direct measurements
 - Remember: fully obtained from radiative corrections!
- Indirect result: m_t = 177.0^{+2.3}_{-2.4} GeV

Tevatron+LHC: 173.34 ± 0.76 GeV

new D0: 174.98 ± 0.76 GeV