Max Baak (CERN), on behalf of the Gfitter group (*) IVICFA Easter Workshop Valencia, 25-26th March 2013

EPJC 72, 2205 (2012), arXiv:1209.2716

The ElectroWeak fit of Standard Model after the Discovery of the Higgs-like boson

(*) M. Baak, J. Haller, A. Höcker, R. Kogler, K. Mönig, M. Schott, J. Stelzer

This presentation:

- Introduction to Gfitter
- Introduction to the electroweak fit of the Standard Model
- Inputs to the electroweak fit
- Fit results
- Future Prospects of ILC
- Conclusion & Outlook

A Generic Fitter Project for HEP Model Testing

- Gfitter = state-of-the-art HEP model testing tool for LHC era
- Gfitter software and features:
 - Modular, object-oriented C++, relying on ROOT, XML, python, etc.
 - Core package with data-handling, fitting, and statistics tools
 - Various fitting tools: Minuit (1/2), Genetic Algorithms, Simulated Annealing, etc.
 - Consistent treatment of statistical, systematic, theoretical uncertainties (Rfit prescription), correlations, and inter-parameter dependencies.
 - » Theoretical uncertainties included in χ^2 with flat likelihood in allowed ranges
 - Full statistics analysis: goodness-of-fit, p-values, parameter scans, MC analyses.
 - Independent "plug-in" physics libraries: SM, 2HDM, multiple BSM model, ...
- Our publications and new results available at: www.cern.ch/Gfitter

Global EW fits: a long history

CERN

- Huge amount of pioneering work by many!
 - Needed to understand importance of loop corrections
 - Observables (now) known at least at two-loop order, sometimes more.
 - High-precision Standard Model (SM) predictions and measurements required
 - First from LEP/SLC, then Tevatron, now LHC.
- EW fits performed by many groups in past
 - D. Bardinet al. (ZFITTER), G. Passarinoet al. (TOPAZ0), LEP EW WG (M. Grünewald, K. Mönig et al.), J. Erler (GAPP), ...
 - Important results obtained!
- (Global SM fits also used at lower energies [CKM-matrix], and many groups pursuing global beyond-SM fits.)

The predictive power of the SM

- As the Z boson couples to all fermions, it is ideal to measure & study both the electroweak and strong interactions.
- Tree level relations for $Z \rightarrow f\bar{f}$
 - $i\bar{f}\gamma^{\mu}\left(g_{V,f}-g_{A,f}\gamma_{5}
 ight)fZ_{\mu}$ we
 - Unification connects the electromagnetic and weak couplings
- The impact of radiative corrections
 - Absorbed into EW form factors: ρ , κ , Δr
 - Effective couplings at the Z-pole
 - Quadraticly dependent on m_t, logarithmic dependence on M_H

$$f \qquad H \qquad H$$

$$\gamma, Z/W \qquad \gamma, Z/W \qquad Z/W \qquad Z/W$$

$$g_{V,f} = \sqrt{\rho_Z^f} \left(I_3^f - 2Q^f \sin^2 \theta_{\text{eff}}^f \right)$$

$$g_{A,f} = \sqrt{\rho_Z^f} I_3^f$$

$$\sin^2 \theta_{\text{eff}}^f = \kappa_Z^f \sin^2 \theta_W$$

$$M_W^2 = \frac{M_Z^2}{2} \left(1 + \sqrt{1 - \frac{\sqrt{8\pi\alpha(1 + \Delta r)}}{G_F M_Z^2}} \right)$$

Hunt for the Higgs

Gfitter group, EPJC 72, 2003 (2012)

- M_H was last missing input parameter of the electroweak fit
- Indirect determination from EW fit (2012): M_H = 96⁺³¹₋₂₄ GeV
- (Direct Higgs limits of course also available in the EW fit.)

The SM fit with Gfitter, including the Higgs

- Discovery of Higgs-like boson at LHC
- Cross section, branching ratios, spin, parity sofar compatible with SM Higgs boson.
- This talk: assume boson is SM Higgs.
- Use in EW fit: M_H = 125.7 ± 0.4 GeV
 - ATLAS: M_H = 126.0 ± 0.4 ± 0.4 GeV
 - CMS: $M_{H} = 125.3 \pm 0.4 \pm 0.5 \text{ GeV}$ [arXiv:1207.7214, arXiv:1207.7235]
- Change in average between fully uncorrelated and fully correlated systematic uncertainties is minor: $\delta M_H : 0.4 \rightarrow 0.5 \text{ GeV}$
- Unique situation: for first time SM is fully over-constrained → Test its self-consistency!
 - The focus of this talk ...

Measurements at the Z-pole (1/2)

- Total cross-section
 - Express in terms of partial decay width of initial and final width:

$$\sigma^Z_{f\bar{f}} = \sigma^0_{f\bar{f}} \frac{s\Gamma^2_Z}{(s - M_Z^2)^2 + s^2\Gamma^2_Z/M_Z^2} \frac{1}{R_{\rm QED}} \quad \text{with} \quad \sigma^0_{f\bar{f}} = \frac{12\pi}{M_Z^2} \frac{\Gamma_{ee}\Gamma_{f\bar{f}}}{\Gamma_Z^2}$$

Corrected for QED radiation

- Full width: $\Gamma_Z = \Gamma_{ee} + \Gamma_{\mu\mu} + \Gamma_{\tau\tau} + \Gamma_{had} + \Gamma_{inv}$
- (Correlated set of measurements.)
- Set of input (width) parameters to EW fit:
 - Z mass and width: M_z, [
 - Hadronic pole cross section:

$$\sigma_{
m had}^0 = 12\pi/M_Z^2 \,\cdot\, \Gamma_{ee}\Gamma_{
m had}/\Gamma_Z^2$$

• Three leptonic ratios (lepton univ.):

$$R_{\ell}^{0} = R_{e}^{0} = \Gamma_{\mathrm{had}} / \Gamma_{ee} \left(= R_{\mu}^{0} = R_{\tau}^{0}
ight)$$

• Hadronic width ratios: R_b^0 ,

Definition of Asymmetry

• Distinguish vector and axial-vector couplings of the Z

$$A_{f} = \frac{g_{L,f}^{2} - g_{R,f}^{2}}{g_{L,f}^{2} + g_{R,f}^{2}} = \frac{2g_{V,f} g_{A,f}}{g_{V,f}^{2} + g_{A,f}^{2}}$$

Directly related to $\sin^{2} \theta_{\text{eff}}^{f\bar{f}} = \frac{1}{4Q_{f}} \left(1 + \mathcal{R}e\left(\frac{g_{V,f}}{g_{A,f}}\right)\right)$

- Observables
 - In case of no beam polarisation (LEP) use final state angular distribution to define forward/backward asymmetry $A_{FB}^f = \frac{N_F^f N_B^f}{N_F^f + N_B^f}$

 $A^f_{L\!R} = \frac{N^f_L - N^f_R}{N^f_L + N^f_R} \frac{1}{\langle |P|_e \rangle} \quad A$

$$A_{IR}^0 = A_e$$

 $A_{FB}^{0,f} = \frac{3}{4}A_eA_f$

• Measurements: $A_{FB}^{0,\ell}, A_{FB}^{0,c}, A_{FB}^{0,b}$ A_{ℓ}, A_{c}, A_{b}

2012 averages for M_W and m_{top}

Max Baak (CERN)

The ElectroWeak fit of Standard Model

- The EW fit requires precise knowledge of $\alpha(M_Z)$ better than 1% level
- Enters various places: hadr. radiator functions, predictions of M_W and $sin^2\theta^f_{eff}$
- Conventionally parametrized as (α(0) = fine structure constant) :

$$\alpha(s) = \frac{\alpha(0)}{1 - \Delta \alpha(s)}$$

Evolution with renormalization scale:

$$\Delta \alpha(s) = \Delta \alpha_{\rm lep}(s) + \Delta \alpha_{\rm had}^{(5)}(s) + \Delta \alpha_{\rm top}(s)$$

- Leptonic term known up to three loops (for $q^2 \gg m_l$)
- Top quark contribution known up to 2 loops, small: -0.7x10⁻⁴
- Hadronic contribution (from the 5 light quarks) is difficult to calculate, cannot be obtained from pQCD alone.
 - Analysis of low-energy e⁺e⁻ data
 - Usage of pQCD if lack of data
- Similar analysis to evaluation of hadronic contribution to (g-2)_µ

[M. Davier et al., Eur. Phys. J. C71, 1515 (2011)]

 $\Delta \alpha_{had}^{(5)}(M_Z) = (274.9 \pm 1.0) \cdot 10^{-4}$

[M. Steinhauser, PLB 429, 158 (1998)]

Theoretical input

- In EW fit with Gfitter we use state-of-the-art calculations:
 - *M_W* Mass of the W boson [M. Awramik et al., Phys. Rev. D69, 053006 (2004)]
 - sin²θ^f_{eff} Effective weak mixing angle [M. Awramik et al., JHEP 11, 048 (2006), M. Awramik et al., Nucl.Phys.B813:174-187 (2009)]
 - Full two-loop + leading beyond-two-loop form factor corrections
 - Γ_{had} QCD Adler functions at N³LO [P. A. Baikov et al., PRL108, 222003 (2012)]
 - N³LO prediction of the hadronic cross section
 - *Rb*

Partial width of Z→bb [Freitas et al., JHEP08, 050 (2012)] ← New! full 2-loop calc.

- Two nuisance parameters in EW fit for theoretical uncertainties:
 - δM_W (4 MeV), $\delta \sin^2 \theta'_{eff}$ (4.7x10⁻⁵)
- Radiative corrections are important!
 - E.g. consider tree-level EW unification relation:
 - This predicts: $M_W = (79.964 \pm 0.005) \text{ GeV}$
 - Experiment: $M_W = (80.385 \pm 0.015) \text{ GeV}$
- Without loop corrections: 27σ discrepancy!

 $M_W^2\Big|_{\text{tree-level}} = \frac{M_Z^2}{2} \cdot \left(1 + \sqrt{1 - \frac{\sqrt{8}\pi\alpha}{G_r M_r^2}}\right)$

Electroweak fit – Experimental inputs

	$M_H \ [GeV]^{(\circ)}$	125.7 ± 0.4	LHC
Latest experimental inputs:	M_W [GeV]	80.385 ± 0.015	
Z-pole observables: from LEP / SLC	Γ_W [GeV]	2.085 ± 0.042	levatron
$\begin{bmatrix} A D L O (3LD), (Hys. Repl. 427, 257 (2000)] \end{bmatrix}$	M_Z [GeV]	91.1875 ± 0.0021	
and 1 W ITOTT LEF/TEVATION [arXiv:1204.0042]	Γ_Z [GeV]	2.4952 ± 0.0023	
m. · average from Tevatron	$\sigma_{ m had}^0$ [nb]	41.540 ± 0.037	LHC
[arXiv:1207.1069]	R^0_ℓ	20.767 ± 0.025	
m m, world averages (PDG)	$A_{ m FB}^{0,\ell}$	0.0171 ± 0.0010	_
[PDG, J. Phys. G33,1 (2006)]	$A_\ell \ ^{(\star)}$	0.1499 ± 0.0018	SLC
$\Delta \alpha_{\rm had}^{(5)}(M_{\rm Z}^2)$ including $\alpha_{\rm s}$ dependency	$\sin^2 \theta_{\rm eff}^{\ell}(Q_{\rm FB})$	0.2324 ± 0.0012	
[Davier et al., EPJC 71, 1515 (2011)]	A_c	0.670 ± 0.027	
M _H from LHC	A_b	0.923 ± 0.020	SLC
[arXiv:1207.7214, arXiv:1207.7235]	$A_{ m FB}^{0,c}$	0.0707 ± 0.0035	-
	$A_{ m FB}^{0,b}$	0.0992 ± 0.0016	LEP
7+2 free fit parameters:	R_c^0	0.1721 ± 0.0030	
M_Z , M_H , $\alpha_S(M_Z^2)$, $\Delta \alpha_{had}^{(5)}(M_Z^2)$,	R_b^0	0.21629 ± 0.00066	
$m_t, \overline{m}_c, \overline{m}_b$	\overline{m}_c [GeV]	$1.27^{+0.07}_{-0.11}$	
2 theory nuisance parameters	\overline{m}_b [GeV]	$4.20^{+0.17}_{-0.07}$	
$- \delta M_{} (4 MeV) \delta \sin^2 A = (4.7 \times 10^{-5})$	$m_t \; [\text{GeV}]$	173.18 ± 0.94	Tevatron
$W(\tau W (\tau W (\tau), 00 m \theta_{eff} (\tau . 1 \times 10))$	$\Delta \alpha_{\rm had}^{(5)}(M_Z^2) \stackrel{(\triangle \bigtriangledown)}{\to}$	2757 ± 10	

Electroweak Fit – SM Fit Results

From the		Parameter	Input value	Free in fit	Fit result incl. M_H	Fit result not incl. M_H	Fit result incl. M_H but not exp. input in row	
	Gfitter	$M_H \; [{ m GeV}]^{(\circ)}$	125.7 ± 0.4	yes	125.7 ± 0.4	94^{+25}_{-22}	94^{+25}_{-22}	
	Group,	M_W [GeV]	80.385 ± 0.015	-	80.367 ± 0.007	80.380 ± 0.012	80.359 ± 0.011	
	FPJC 72	Γ_W [GeV]	2.085 ± 0.042	-	2.091 ± 0.001	2.092 ± 0.001	2.091 ± 0.001	
	2205	M_Z [GeV]	91.1875 ± 0.0021	yes	91.1878 ± 0.0021	91.1874 ± 0.0021	91.1983 ± 0.0116	
		Γ_Z [GeV]	2.4952 ± 0.0023	-	2.4954 ± 0.0014	2.4958 ± 0.0015	2.4951 ± 0.0017	
	(2012)	$\sigma_{ m had}^0$ [nb]	41.540 ± 0.037	-	41.479 ± 0.014	41.478 ± 0.014	41.470 ± 0.015	
		R^0_ℓ	20.767 ± 0.025	-	20.740 ± 0.017	20.743 ± 0.018	20.716 ± 0.026	
		$A_{ m FB}^{0,\ell}$	0.0171 ± 0.0010	-	0.01627 ± 0.0002	0.01637 ± 0.0002	0.01624 ± 0.0002	
	Left: full fit	$A_\ell \ ^{(\star)}$	0.1499 ± 0.0018	-	$0.1473^{+0.0006}_{-0.0008}$	0.1477 ± 0.0009	$0.1468 \pm 0.0005^{(\dagger)}$	
	incl M	$\sin^2 \theta_{\rm eff}^{\ell}(Q_{\rm FB})$	0.2324 ± 0.0012	-	$0.23148^{+0.00011}_{-0.00007}$	$0.23143^{+0.00010}_{-0.00012}$	0.23150 ± 0.00009	
	IIICI. WI _H	A_c	0.670 ± 0.027	-	$0.6680^{+0.00025}_{-0.00038}$	$0.6682^{+0.00042}_{-0.00035}$	0.6680 ± 0.00031	
		A_b	0.923 ± 0.020	-	$0.93464^{+0.00004}_{-0.00007}$	0.93468 ± 0.00008	0.93463 ± 0.00006	
		$A_{ m FB}^{0,c}$	0.0707 ± 0.0035	-	$0.0739 \substack{+0.0003 \\ -0.0005}$	0.0740 ± 0.0005	0.0738 ± 0.0004	
	Middle: fit	$A_{ m FB}^{0,b}$	0.0992 ± 0.0016	-	$0.1032 \substack{+0.0004 \\ -0.0006}$	0.1036 ± 0.0007	0.1034 ± 0.0004	
	not incl. Mu	R_c^0	0.1721 ± 0.0030	-	0.17223 ± 0.00006	0.17223 ± 0.00006	0.17223 ± 0.00006	
	н	R_b^0	0.21629 ± 0.00066	-	0.21474 ± 0.00003	0.21475 ± 0.00003	0.21473 ± 0.00003	
		\overline{m}_c [GeV]	$1.27^{+0.07}_{-0.11}$	yes	$1.27^{+0.07}_{-0.11}$	$1.27^{+0.07}_{-0.11}$	-	
	Right: fit	\overline{m}_b [GeV]	$4.20^{+0.17}_{-0.07}$	yes	$4.20^{+0.17}_{-0.07}$	$4.20^{+0.17}_{-0.07}$	-	
	inal M	$m_t [\text{GeV}]$	173.18 ± 0.94	yes	173.52 ± 0.88	173.14 ± 0.93	$175.8^{+2.7}_{-2.4}$	
	IIICI IVI _H ,	$\Delta \alpha_{\rm had}^{(5)}(M_Z^2) \ ^{(\bigtriangleup \bigtriangledown)}$	2757 ± 10	yes	2755 ± 11	2757 ± 11	2716^{+49}_{-43}	
	not the row	$\alpha_{\scriptscriptstyle S}(M_Z^2)$	_	yes	0.1191 ± 0.0028	0.1192 ± 0.0028	0.1191 ± 0.0028	
		$\delta_{ m th} M_W$ [MeV]	$[-4,4]_{\mathrm{theo}}$	yes	4	4	_	
		$\delta_{\rm th} \sin^2 \theta_{\rm eff}^{\ell} (\Delta)$	$[-4.7, 4.7]_{\rm theo}$	yes	-1.4	4.7	-	

Max Baak (CERN)

The ElectroWeak fit of Standard Model

Electroweak Fit – SM Fit Results

- No individual value exceeds 3σ
- Small pulls for M_H , M_Z , $\Delta \alpha_{had}^{(5)}(M_Z^2)$, \overline{m}_c , \overline{m}_b indicate that input accuracies exceed fit requirements
- Largest deviations in b-sector: A^{0,b}_{FB} and R⁰_b with 2.5σ and -2.4σ
 - \rightarrow largest contribution to χ^2
- R⁰_b using one-loop calculation -0.8σ
 - R_{b}^{0} has only little dependence on M_{H}
- Most affected when including M_H : M_W prediction:
 - Shift in predicted M_w value of 13 MeV.

Plot inspired by Eberhardt et al. [arXiv:1209.1101]

Goodness of Fit

Toy analysis: p-value for wrongly rejecting the SM = 0.07^{+0.01 (theo)}

- p-value is equivalent to 1.8σ.
- Evaluated with 20k pseudo experiments follows χ^2 with 14 d.o.f.
- For comparison: $\chi^2_{min} = 21.8 \rightarrow \text{Prob}(\chi^2_{min}, 14) = 8 \%$
- Large value of χ^2_{min} not due to inclusion of M_H measurement.
- Without M_H measurement: χ^2_{min} = 20.3 \rightarrow Prob(χ^2_{min} , 13) = 9%

Higgs results of the EW fit

Prediction for $\alpha_s(M_Z)$ **from Z** \rightarrow **hadrons**

- Scan of $\Delta \chi^2$ versus α_s ∆² SM fit 4.5 Also shown: SM fit with SM fit with minimal input and R_1^0 and σ_{had}^0 **2**σ minimal inputs: - α, from τ decays at 3NLO [Eur.Phys.J.C56,305 (2008)] 3.5 M_Z , G_F , $\Delta \alpha_{had}^{(5)}(M_Z)$, $\alpha_s(M_Z)$, M_{H} , and fermion masses з 2.5 Determination of α_s 2 at N³LO. 1.5 Most sensitive through • 1σ total hadronic cross-section σ^{0}_{had} and 0.5 partial leptonic width R⁰ 0.112 0.12 0.122 0.126 0.114 0.116 0.118 0.124 α_s(M_) $\alpha_s(M_Z) = 0.1191 \pm 0.0028 \,(\text{exp.}) \pm 0.0001 \,(\text{theo.})$
- Theory uncertainty at per-mille level (obtained by scale variation of Γ_{had}).
- In good agreement with value from τ decays, also at N³LO.
 - (Improvements in precision only expected with ILC/GigaZ. See later.)

Indirect determination of W mass

Uncertainty on world average measurement: 15 MeV

Indirect effective weak mixing angle

∆2

- Right: scan of Δχ² profile versus sin²θ^I_{eff}
 - All sensitive measurements removed from the SM fit.
 - Also shown: SM fit with minimal inputs
- M_H measurement allows for very precise constraint on sin²θ^I_{eff}

Fit result for indirect determination of sin²θ^I_{eff}:

 $\sin^2 \theta_{\text{eff}}^{\ell} = 0.231496 \pm 0.000030_{m_t} \pm 0.000015_{M_Z} \pm 0.000035_{\Delta \alpha_{\text{had}}} \\ \pm 0.000010_{\alpha_S} \pm 0.000002_{M_H} \pm 0.000047_{\text{theo}} ,$

 $= 0.23150 \pm 0.00010_{\rm tot} \; ,$

- More precise than direct determination (from LEP/SLD) !
 - Uncertainty on LEP/SLD average: 1.6x10⁻⁴

Indirect determination of top mass

- Shown: scan of $\Delta \chi^2$ profile versus m_t (without m_t measurement)
 - M_H measurement allows for significant better constraint of m_t
 - Indirect determination consistent with direct measurements
 - Remember: fully obtained from loop corrections!
- Indirect result: $m_t = 175.8^{+2.7}_{-2.4}$ GeV (Tevatron w.a.: 173.2 ± 0.9 GeV)

State of the SM: W versus top mass

- Scan of M_W vs m_t, with the direct measurements excluded from the fit.
- Results from Higgs measurement significantly reduces allowed indirect parameter space → corners the SM!

Observed agreement demonstrates impressive consistency of the SM!

Constraints on Oblique Corrections

- At low energies, BSM physics appears dominantly through vacuum polarization corrections
 - Aka, "oblique corrections"
- Oblique corrections reabsorbed into electroweak form factors
 - $\Delta \rho$, $\Delta \kappa$, Δr parameters, appearing in: M_W², sin² θ_{eff} , G_F, α , etc.
- Electroweak fit sensitive to BSM physics through oblique corrections x
 - Similar to sensitivity to Higgs loop corrections.

 Oblique corrections from New Physics described through STU parametrization [Peskin and Takeuchi, Phys. Rev. D46, 1 (1991)]

 $O_{meas} = O_{SM,REF}(m_H,m_t) + c_S S + c_T T + c_U U$

- S: New Physics contributions to neutral currents
- T: Difference between neutral and charged current processes – sensitive to weak isospin violation
- U: (+S) New Physics contributions to charged currents. U only sensitive to W mass and width, usually very small in NP models (often: U=0)
- Also implemented: correction to Z→bb coupling, extended parameters (VWX)
 [Burgess et al., Phys. Lett. B326, 276 (1994)]
 [Burgess et al., Phys. Rev. D49, 6115 (1994)]

Fit results for S, T, U

- S,T,U obtained from fit to the EW observables
- SM: M_H = 126 GeV, m_t = 173 GeV
 - This defines (S,T,U) = (0,0,0)
- SM: S, T depend logarithmically on M_H

Fit result:		S	Т	U
$S = 0.03 \pm 0.10$	S	1	+0.89	-0.54
$T = 0.05 \pm 0.10$	Т		1	-0.83
$1 = 0.05 \pm 0.12$	U			1
$U = 0.03 \pm 0.10$				

- Stronger constraints from fit with U=0.
- Also available for $Z \rightarrow bb$ correction.
- No indication for new physics.
- Can now use this to constrain 4th gen, Ex-Dim, T-C, Higgs couplings, etc.

ILC Prospects for the Standard Model fit

- Future Linear Collider could improve precision of EW observables tremendously.
 - *WW threshold, to obtain M_W*
 - from threshold scan: δM_W : 15 \rightarrow 6 MeV
 - ttbar threshold, to obtain m_t
 - obtain m_t indirectly from production cross section: $\delta m_t: 0.9 \rightarrow 0.1 \; GeV$
 - Z pole measurements
 - High statistics: 10^9 Z decays: δR^{0}_{lep} : $2.5 \cdot 10^{-2} \rightarrow 4 \cdot 10^{-3}$
 - With polarized beams, uncertainty on $\delta A^{0,f}_{LR}$: $10^{-3} \rightarrow 10^{-4}$, which translates to $\delta \sin^2 \theta^{I}_{eff}$: $1.6 \cdot 10^{-4} \rightarrow 1.3 \cdot 10^{-5}$
- Low-energy data results to improve $\Delta \alpha_{had}$:
 - ISR-based (BABAR) and KLOE-II, BESIII e⁺e⁻ cross-section measurements, in particular around cc resonance ...
 - ... plus: improved α_s , improvements in theory: $\Delta \alpha_{had}$: $10^{-4} \rightarrow 5 \cdot 10^{-5}$

Prospects for ILC with Giga Z

- Logarithmic dependency on $M_H \rightarrow$ cannot compete with direct M_H meas.
- Indirect prediction M_H dominated by theory uncertainties.
 - No theory uncertainty: $M_H = 94.2^{+5.3}_{-5.0} \text{ GeV}$
 - R-fit scheme: $M_{\rm H} = 92.3^{+16.6}_{-11.6} \, {\rm GeV}$

Prospects for ILC with Giga Z

Also strong constraints on S, T, U

M_w [GeV]

-0.5

s

fitter

0.2

- Including M_H measurement, for first time SM is fully over-constrained!
 - M_H consistent at 1.3 σ with indirect prediction from EW fit.
- p-Value of global electroweak fit of SM: 7% (pseudo-experiments)
 - Would be great to revisit Z→bb, both theoretically and experimentally
- Knowledge of M_H dramatically improves SM prediction of key observables
 - M_W (28 \rightarrow 11 MeV), sin² θ^{I}_{eff} (2.3x10⁻⁵ \rightarrow 1.0x10⁻⁵), m_t (6.2 \rightarrow 2.5 GeV)
- Improved accuracies set benchmark for new direct measurements!

Outlook

 δM_{W} (indirect)

higher-order

EW corrections.

Paradigm shift for EW fit: from Higgs mass prediction to ... consistency tests of the Standard Model:

- What's next for Gfitter: combine Higgs couplings in the EW fit. To be continued ...
- Latest results always available at: <u>http://cern.ch/Gfitter</u>
 - Results of this presentation: EPJC 72, 2205 (2012)

A Generic Fitter Project for HEP Model Testing

Backup

New R⁰_b calculation [A. Freitas et al., JHEP 1208, 050 (2012)]

- The branching ratio R_b^0 : partial decay width of Z \rightarrow bb to Z \rightarrow qq
- Freitas et al: full 2-loop calculation of $Z \rightarrow bb$
- Contribution of same terms as in the calculation of $sin^2 \theta^{bb}_{eff}$ \rightarrow cross-check of two results found good agreement
- Two-loop corrections comparable to experimental uncertainty (6.6x10⁻⁴)

	1-loop EW and QCD correction to FSR	2-loop EW correction	2-loop EW and 2+3-loop QCD correction to FSR	1+2-loop QCD correction to gauge boson self-energies
$M_{ m H}$ [GeV]	$\begin{array}{c} \mathcal{O}(\alpha) + \mathrm{FSR}_{1-\mathrm{loop}} \\ [10^{-3}] \end{array}$	$\begin{array}{c} \mathcal{O}(\alpha_{\rm ferm}^2) \\ [10^{-4}] \end{array}$	$\begin{array}{c} \mathcal{O}(\alpha_{\rm ferm}^2) + {\rm FSR}_{>1-\rm loop} \\ [10^{-4}] \end{array}$	$\begin{array}{c} \mathcal{O}(\alpha\alpha_{\rm s},\alpha\alpha_{\rm s}^2) \\ [10^{-4}] \end{array}$
100	-3.632	-6.569	-9.333	-0.404
200	-3.651	-6.573	-9.332	-0.404
400	-3.675	-6.581	-9.331	-0.404

Higgs couplings in the EW fit

- In latest ATLAS H→γγ, 2.3σ deviation seen from SM μ (≡1.0)
- Interpret.: $H \rightarrow VV$ couplings scaled with c_V

From: Falkowski et al, arXiv:1303.1812

- Modified Higgs couplings can be constrained by EW fit through extended STU formalism.
- Result of c_V driven by limit on T parameter.
 - Tree-level relation: $\rho_0 = \frac{M_{W_0}^2}{M_{\pi}^2 c_{\pi\pi}^2} = 1 + \alpha T$

•
$$\alpha T \approx \frac{3g_Y^2}{32\pi^2} (c_V^2 - 1) \log(\Lambda/m_Z)$$

- Reminder: T = 0.05 ± 0.12 (Gfitter)
- EW-fit Falkowski et al: $c_V \approx 1.08 \pm 0.07$
 - Blue dashed: c_V from µ's, black: comb. w/ EW

Unconv. centr

The ElectroWeak fit of Standard Model

Radiator Functions

- Partial widths are defined inclusively: contain both QCD and QED contributions.
- Corrections expressed as so-called radiator functions R_{A,f} and R_{V,f}

$$\Gamma_{f\bar{f}} = N_c^f \frac{G_F M_Z^3}{6\sqrt{2}\pi} \left(|g_{A,f}|^2 R_{A,f} + |g_{V,f}|^2 R_{V,f} \right)^2$$

- High sensitivity to the strong coupling α_s
- Recently, full four-loop calculation of QCD Adler function became available (N³LO)
- Much-reduced scale dependence!
- Theoretical uncertainty of 0.1 MeV, compared with experimental uncertainty of 2.0 MeV.

[P. Baikov et al., Phys. Rev. Lett. 108, 222003 (2012)]
 [P. Baikov et al Phys. Rev. Lett. 104, 132004 (2010)]

Calculation of M_w

- Full EW one- and two-loop calculation of fermionic and bosonic contributions.
- One- and two-loop QCD corrections and leading terms of higher order corrections.
- Results for Δr include terms of order $O(\alpha)$, $O(\alpha \alpha_s)$, $O(\alpha \alpha_s^2)$, $O(\alpha^2_{ferm})$, $O(\alpha^2_{bos})$, $O(\alpha^2 \alpha_s m_t^4)$, $O(\alpha^3 m_t^6)$
- Uncertainty estimate:
 - Missing terms of order $O(\alpha^2 \alpha_s)$: about 3 MeV (from $O(\alpha^2 \alpha_s m_t^4)$)
 - Electroweak three-loop correction O(α³): < 2 MeV
 - Three-loop QCD corrections $O(\alpha \alpha_s^{-3})$: < 2 MeV
- Total: δM_W ≈ 4 MeV

[M Awramik et al., Phys. Rev. D69, 053006 (2004)] [M Awramik et al., Phys. Rev. Lett. 89, 241801 (2002)]

Calculation of $sin^2(\theta_{eff})$

Effective mixing angle:

$$\sin^2 heta_{
m eff}^{
m lept} = \left(1 - M_{
m W}^2/M_{
m Z}^2\right) \left(1 + \Delta \kappa\right)$$

- Two-loop EW and QCD correction to $\Delta \kappa$ known, leading terms of higher order QCD corrections.
- Fermionic two-loop correction about 10^{-3} , whereas bosonic one 10^{-5} .
- Uncertainty estimate obtained with different methods, geometric progression, leading to total: $\delta sin^2(\theta_{eff}^{I}) = 4.7 x 10^{-5}$

Input correlation coefficients between Z pole measurements

	M_Z	Γ_Z	$\sigma_{ m had}^0$	R^0_ℓ	$A^{0,\ell}_{\scriptscriptstyle \mathrm{FB}}$		$A^{0,c}_{\scriptscriptstyle\mathrm{FB}}$	$A^{0,b}_{\scriptscriptstyle\mathrm{FB}}$	A_c	A_b	R_c^0	R_b^0
M_Z	1	-0.02	-0.05	0.03	0.06	$A^{0,c}_{\scriptscriptstyle \mathrm{FB}}$	1	0.15	0.04	-0.02	-0.06	0.07
Γ_Z		1	-0.30	0.00	0.00	$A^{0,b}_{\scriptscriptstyle \mathrm{FB}}$		1	0.01	0.06	0.04	-0.10
$\sigma_{ m had}^0$			1	0.18	0.01	A_c			1	0.11	-0.06	0.04
R^0_ℓ				1	-0.06	A_b				1	0.04	-0.08
$A^{0,\ell}_{\scriptscriptstyle\mathrm{FB}}$					1	R_c^0					1	-0.18

Table 2: Correlation matrices for observables determined by the Z lineshape fit (left), and by heavy flavour analyses at the Z pole (right) [56].

Top mass dependence on Event Kinematics

- Difficult to define a pole mass for heavy, unstable and colored particle.
- The top mass extracted in hadron collisions is not well defined below a precision of $O(\Gamma_t) \sim 1 \text{ GeV}$
 - Single top decays before hadronizing. To have colorless final states, additional quarks needed.
 - Non-perturb. color-reconnection effects in fragmentation.
 - Ambiguities in top mass definition
- Result: m_t^{exp} ≠ m_t^{pole}, and event-dependent.

- With additional theo. uncertainty of 0.5 GeV on m_t:
 - $M_{H} = 90^{+34}_{-21}$ GeV, $M_{W} = 80.359 \pm 0.013$ GeV, $\sin^2 \theta_{eff}^{I} = 0.23148 \pm 0.00010$.
 - Only small deterioration in precision.

- Several extended STU parametrizations available
 - Here: STU + $\delta \varepsilon_b$, latter parameter describing Z \rightarrow bb vertex
- SM: M_H = 125.7 GeV, m_t = 173.2 GeV
 - This defines (S,T,U) = (0,0,0)
- S, T depend logarithmically on M_H
- Fit result:

• (Stronger constraints from fit with U=0.)

Prospects for LHC, ILC and ILC with Giga-Z

- Assumed experimental improvements for prospective study:
 - LHC: M_W, m_{top}
 - ILC: M_W, m_{top}
 - Giga-Z: M_W , m_{top} , $sin^2\theta^{I}_{eff}$, R_{Iep}
 - ISR-based (BABAR) and BESIII, KLOE-II cross-section measurements, should improve $\Delta\alpha_{had}(M_Z)$

	Expected uncertainty							
Quantity	Present	LHC	ILC	GigaZ (ILC)				
$\overline{M_W [MeV]}$	23	15	15	6				
$m_t \; [\; { m GeV}]$	1.3	1.0	0.2	0.1				
$\sin^2 \theta_{ m eff}^{\ell} \ [10^{-5}]$	17	17	17	1.3				
$R^0_\ell \; [10^{-2}]$	2.5	2.5	2.5	0.4				
$\Delta lpha_{ m had}^{(5)}(M_Z^2) \ [10^{-5}]$	22 (7)	22 (7)	22 (7)	22 (7)				
$\overline{M_{H}(=120~{ m GeV})~[~{ m GeV}]} \ lpha_{\scriptscriptstyle S}(M_Z^2)~[10^{-4}]$	$^{+54}_{-40} \begin{pmatrix} +51\\ -38 \end{pmatrix} \begin{bmatrix} +38\\ -30 \end{bmatrix}$ 28	$^{+45}_{-35} \begin{pmatrix} +42\\ -33 \end{pmatrix} \begin{bmatrix} +30\\ -25 \end{bmatrix}$ 28	$^{+42}_{-33} \begin{pmatrix} +39\\ -31 \end{pmatrix} \begin{bmatrix} +28\\ -23 \end{bmatrix}$ 28	$^{+26}_{-23} \begin{pmatrix} +20\\ -18 \end{pmatrix} \begin{bmatrix} +8\\ -8 \end{bmatrix}$ 6				

Input from: [ATLAS, Physics TDR (1999)] [CMS, Physics TDR (2006)] [A. Djouadi et al., arXiv:0709.1893][I. Borjanovic, EPJ C39S2, 63 (2005)] [S. Haywood et al., hep-ph/0003275] [R. Hawkings, K. Mönig, EPJ direct C1, 8 (1999)] [A. H. Hoang et al., EPJ direct C2, 1 (2000)] [M. Winter, LC-PHSM-2001-016]