

Helmholtz Alliance 'Physics at the Terascale' 27th November 2008

paper submitted to Eur. Phys. J. C, (arXiv:0811.0009)

Martin Goebel DESY/ Universität Hamburg

Gfitter group: H. Flächer (CERN), M. G. (Univ. Hamburg, DESY), J. Haller (Univ. Hamburg), A. Höcker (CERN), K. Mönig (DESY), J. Stelzer (DESY)

- Gfitter: A Generic Fitter Project for HEP Model Testing
- aim: provide a reliable framework for involved fitting problems in the LHC era (and beyond).
- software:
 - abstract object-oriented code in C++ using ROOT functionality
 - core package:
 - tools for data handling, fitting, statistical analyses
 - physics: plug-in packages
 - **GSM**: Library for the Standard Model fit to the electroweak precision data
 - **G2HDM**: Library for the 2HDM extension of the SM
 - **GSUSY**: Library for supersymmetric extensions of the SM (in preparation)

• Gfitter features:

- consistent treatment of statistical, systematic and theoretical errors, correlations, and inter-parameter dependencies
 - theoretical uncertainties: Rfit prescription [A Höcker et al., EPJ C21, 225 (2002)]
 - theory uncertainties included in χ^2 estimator with flat likelihood in allowed ranges
- fitting:
 - several minimization algorithms available, e.g. TMinuit, genetic minimisation algorithm
- caching of computation results between fit steps
 - only theory predictions are recalculated that depend on modified parameters
 - substantial speed improvement
- advanced statistical analyses (frequentist approach):
 - e.g. parameter scans, contours, MC toy analyses, goodness-of-fit, p-value, etc.

- first theoretical library implemented in Gfitter framework: SM predictions of electroweak precision observables
- state-of-the art calculations (OMS scheme); in particular:
 - M_w and $sin^2\theta_{eff}^f$: full two-loop + leading beyond-two-loop correction

[M. Awramik et al., Phys. Rev D69, 053006 (2004) and ref.][M. Awramik et al., JHEP 11, 048 (2006) and refs.]

• radiator functions: N³LO of the massless QCD Adler function

[P.A. Baikov et al., Phys. Rev. Lett. 101 (2008) 012022]

- first theoretical library implemented in Gfitter framework: SM predictions of electroweak precision observables
- state-of-the art calculations (OMS scheme); in particular:
 - M_W and sin²θ^f_{eff}: full two-loop + leading beyond-two-loop correction [M. Awramik et al., Phys. Rev D69, 053006 (2004) and ref.][M. Awramik et al., JHEP 11, 048 (2006) and refs.]
 - radiator functions: N³LO of the massless QCD Adler function

[P.A. Baikov et al., Phys. Rev. Lett. 101 (2008) 012022]

- calculations thoroughly cross-checked against ZFitter (Fortran) package → excellent agreement
- free fit parameters:
 - $M_{Z'}$, $M_{H'}$, $m_{t'}$, $\Delta \alpha_{had}^{(5)}$ (M_{Z}^2), α_{S} (M_{Z}^2), $\overline{m}_{c'}$, \overline{m}_{b}
 - parameters for theoretical uncertainties on $M_W (\delta M_W = 4-6 \text{GeV})$, $\sin^2 \theta_{eff}^I (\delta \sin^2 \theta_{eff}^I = 4.7 \cdot 10^{-5})$ (and the electroweak form factors ρ_Z^f , κ_Z^f)

Experimental Input

Parameter	Input value	Free in fit
M_Z [GeV]	91.1875 ± 0.0021	yes
Γ_Z [GeV]	2.4952 ± 0.0023	-
$\sigma_{\rm had}^0$ [nb]	41.540 ± 0.037	-
R^0_ℓ	20.767 ± 0.025	-
$A_{\rm FB}^{0,\ell}$	0.0171 ± 0.0010	-
$A_{\ell} (\star)$	0.1499 ± 0.0018	-
A_c	0.670 ± 0.027	-
A_b	0.923 ± 0.020	-
$A_{FB}^{0,c}$	0.0707 ± 0.0035	-
$A_{\rm FB}^{0,b}$	0.0992 ± 0.0016	-
R_c^0	0.1721 ± 0.0030	-
R_b^0	0.21629 ± 0.00066	-
$\sin^2 \theta_{\text{eff}}^{\ell}(Q_{\text{FB}})$	0.2324 ± 0.0012	-
M_H [GeV] $^{(\circ)}$	Likelihood ratios	yes
M_W [GeV]	80.398 ± 0.025	-
Γ_W [GeV]	2.106 ± 0.050	-
\overline{m}_c [GeV]	1.25 ± 0.09	yes
\overline{m}_b [GeV]	4.20 ± 0.07	yes
m_t [GeV]	172.4 ± 1.2	yes
$\Delta \alpha_{\rm had}^{(5)}(M_Z^2)^{(\dagger \Delta)}$	2769 ± 22	yes
$\alpha_s(M_Z^2)$	-	yes
$\delta_{\rm th} M_W$ [MeV]	$[-4,4]_{\mathrm{theo}}$	yes
$\delta_{\rm th} \sin^2 \theta_{\rm eff}^{\ell}$ (†)	$[-4.7, 4.7]_{\rm theo}$	yes
$\delta_{\rm th} \rho_Z^f$ (†)	$[-2,2]_{\mathrm{theo}}$	yes
$\delta_{\mathrm{th}}\kappa_Z^f$ (†)	$[-2, 2]_{\rm theo}$	yes

 $^{\rm +}$ in units of $10^{\rm -5}$

- usage of latest experimental results:
 - **Z-pole observables: LEP/SLD results** [ADLO+SLD, Phys. Rept. 427, 257 (2006)]
 - M_w and Γ_w: LEP + Tevatron [ADLO, hep-ex/0612034] [CDF, Phys Rev. D77, 112001 (2008)] [CDF, Phys. Rev. Lett. 100, 071801 (2008)] [CDF+D0, Phys. Rev. D 70, 092008 (2004)]
 - m_c, m_b: world averages [PDG, J. Phys. G33,1 (2006)]
 - m_t: <u>latest Tevatron average</u> [arXivx:0808.1089 [hep-ex]]
 - $\Delta \alpha_{had}^{(5)}(M_{z}^{2})$: [K. Hagiwara et al., Phys. Lett. B649, 173 (2007)] + Gfitter rescaling mechanism to account for α_{s} -dependency
 - fits are performed in two versions:
 - Standard fit: all data except results from direct Higgs searches
 - *Complete fit*: all data including results from direct Higgs searches at LEP [ADLO: Phys. Lett. B565, 61 (2003)] and Tevatron [CDF+D0: arXiv:0804.3423, CDF+D0: arXiv:0808.0534]

Direct Higgs Searches

- Usage of CL_{S+B}:
 - describe probability of upwards fluctuations of the test statistics (LLR, -2lnQ)
 - transform one-sided CL_{S+B} into a two-sided CL
 - contribution to χ^2 estimator obtained via inverse error function

$$\delta \chi^2 = Erf^{-1}(1 - CL_{S+B}^{2-sided})$$

Fit Results

	convergence and naïve p-values: • <i>standard fit</i> : $\chi^2_{min}=16.4 \rightarrow \text{Prob}(\chi^2_{min},13)=0.23$ • <i>complete fit</i> : $\chi^2_{min}=18.0 \rightarrow \text{Prob}(\chi^2_{min},14)=0.21$
•	$\alpha_{\rm S}$ from <i>complete fit</i> : $\alpha_{\rm S}(M_Z^2) = 0.1193^{+0.0028}_{-0.0027} \pm 0.0001$ first error is experimental fit error
	 second error due to missing QCD orders: incl. variation of renorm. scale from M_z/2 to 2M_z and massless terms of order/beyond α_s⁵(M_z) and massive terms of order/beyond α_s⁴(M_z)
	• excellent agreement with recent N ³ LO result from τ decay [M. Davier et al., arXiv:0803.0979] $\alpha_s(M_Z^2) = 0.1212 \pm 0.0011$
	pull values of <i>complete fit</i>
	 no value exceeds 3σ
	• FB asymmetry of bottom quarks -> largest contribution to χ^2

Martin Goebel

Results for M_H

- M_H from *standard fit*.
 - central value $\pm 1\sigma$: $M_H = 80^{+30}_{-23} GeV$
 - 2σ interval: [39, 155] GeV
 - 3σ interval: [26, 209] GeV

green band due to Rfit treatment of theory errors, fixed errors lead to larger χ^2

- M_H from *complete fit* (i.e. incl. direct Higgs searches):
 - central value $\pm 1\sigma$: $M_{H} = 116.4_{-1.3}^{+18.3} GeV$
 - 2σ interval: [114, 145] GeV

More Detailed Analysis

- M_H from fits excluding respective measurements
 - excluding $A_{I}(SLD) =>$ significantly larger M_{H}
 - tension between W mass, A_I(SLD), and FB asymmetry of bottom quarks
 - toy analysis ("look-elsewhere-effect")
 - 1.4% (2.5 σ) of toys show a result worse than the one of the observed values

by using toy analysis

- execute the SM fit
- generate toy sample by random sampling from Gaussian distributions around initial fit results (Correlations are taken into account)
- refit with new values for observables, achieve a new χ^2

Advanced Statistical Analysis

- Gfitter allows statistical analysis of fit results
- example: study of the Gaussian properties of the $\Delta \chi^2$ estimator
 - good agreement of CL from MC toy with Gaussian approximation using Prob().

- p-values for fixed Higgs masses using toy experiment
- <u>here</u>: p-value is larger than for fit with free Higgs mass
 - Higgs mass fixed
 - n_{dof} increased by one

∾ຸ 10

9

8

6

5

3 2

n

155

Top Quark Results

Martin Goebel

DESY

Top versus W Mass

- indirect fit results agree with experimental values
- results from Higgs searches significantly reduce the allowed parameter space
- good probe of SM, if M_H is measured at LHC and/or ILC

Prospects for LHC and ILC

• LHC, ILC (+GigaZ)

- exp. improvement on M_W , m_t , $sin^2 \theta^l_{eff}$, R_l^0
- assumed $\Delta \alpha_{had}^{(5)}(M_Z^2)$, e.g. $\sigma(\Delta \alpha_{had}^{(5)}) \sim 7 \cdot 10^{-5}$

[F. Jegerlehner, hep-ph/0105283]

Expected uncertainty Quantity GigaZ (ILC) Present LHC ILC M_W [MeV] 25 15 15 6 $m_t [\text{GeV}]$ 1.2 1.0 0.2 0.1 $\sin^2 \theta_{eff}^{\ell} [10^{-5}]$ 17 17 17 1.3 $R_{\ell}^0 [10^{-2}]$ 2.52.52.50.4 $\Delta \alpha_{\rm had}^{(5)}(M_Z^2) [10^{-5}]$ 22 (7) 22(7) 22(7)22(7) $^{+56}_{-40}$ $\begin{pmatrix} +52\\ -39 \end{pmatrix}$ $\begin{bmatrix} +39\\ -31 \end{bmatrix}$ $^{+45}_{-35} \begin{pmatrix} +42\\ -33 \end{pmatrix} \begin{bmatrix} +30\\ -25 \end{bmatrix}$ $^{+42}_{-33} \begin{pmatrix} +39\\ -31 \end{pmatrix} \begin{bmatrix} +28\\ -23 \end{bmatrix}$ $M_H (= 120 \text{ GeV}) [\text{ GeV}]$ $^{+27}_{-23} \begin{pmatrix} +20\\ -18 \end{pmatrix} \begin{bmatrix} +8\\ -7 \end{bmatrix}$ $lpha_{S}(M_{Z}^{2}) \, [10^{-4}]$ 282827

Fits:

- not used: α_{s} , M_H measurements
- assume M_H=120 GeV
- improvement of M_H prediction
 - to be confronted with direct measurement → goodness-of-fit
 - broad minima: Rfit treatment of theo. uncertainties
- GigaZ: significant improvement for $\alpha_{s}(M_{z}^{2})$

[ATLAS, Physics TDR (1999)][CMS, Physics TDR (2006)][A. Djouadi et al., arXiv:0709.1893] [I. Borjanovic, EPJ C39S2, 63 (2005)][S. Haywood et al., hep-ph/0003275] [R. Hawkings, K. Mönig, EPJ direct C1, 8 (1999)]

[A. H. Hoang et al., EPJ direct C2, 1 (2000)][M. Winter, LC-PHSM-2001-016]

Two-Higgs-Doublet-Model

- 2HDM (Type-II)
 - additional Higgs doublet
 - one doublet couples to u-type, one doublet couples to d-type quarks
 - 6 free parameters $\rightarrow M_{H\pm}$, M_{A0} , M_{H0} , M_{h} , tan β , $|\alpha|$

- so far: only looked at processes sensitive to charged Higgs $\rightarrow M_{H_{\pm}}$, tan β
- Overlay of individual 95% CL excluded regions
 - assuming n_{dof}=1 and 2-sided limits
- Combined fit:
 - resolved by MC toy study assuming 2-sided limits
 - χ^2_{min} =3.9 at M_H=858 GeV and tan β =6.8
- Excluded at 95% CL:
 - small $tan\beta$
 - for all tanβ
 - M_H < 240 GeV
 - $M_H < 780$ GeV for tan $\beta = 70$

Martin Goebel

- Gfitter is a framework for involved fitting problems
- First theory package: Revisit of the electroweak fit of the SM
 - latest theoretical calculations and experimental results
 - advanced studies of the statistical properties of the fit
 - inclusion of direct Higgs searches
 - beyond Standard Model example: 2HDM (Type-II)
- Continuous Efforts
 - Keep existing parts up-to-date
- Next steps:
 - implementation of more theories, e.g. SUSY models, little Higgs
- More information:
 - http://cern.ch/Gfitter
 - paper submitted to Eur. Phys. J. C, (arXiv:0811.0009)

Martin Goebel

Treatment of theo. Uncertainties

Uncertainties for Theory-Prediction (two main sources)

$$M_W \pm \Delta M_W(theo) = \sin^2 \Theta_{eff}^{lept} \pm \Delta \sin^2 \Theta_{eff}^{lept}(theo)$$

Old Treatment:

Band was done by **shifting** the predictions by these uncertainties **redoing** the scan and **choosing** the worst cases

New Treatment: (à la Rfit [CKMFITTER])

if measurement

- within theory uncertainty: no contribution to χ^2 .
- outside theory uncertainty: χ² determined by distance between measurement and prediction ± uncertainty